R450™ Rack Mount Data Collector
Installation and Maintenance Guide
Copyright

This manual is an unpublished work and contains the trade secrets and confidential information of Neptune Technology Group Inc., which are not to be divulged to third parties and may not be reproduced or transmitted in whole or part, in any form or by any means, electronic or mechanical for any purpose, without the express written permission of Neptune Technology Group Inc. All rights to designs or inventions disclosed herein, including the right to manufacture, are reserved to Neptune Technology Group Inc.

Neptune engages in ongoing research and development to improve and enhance its products. Therefore, Neptune reserves the right to change product or system specifications without notice.

Trademarks Used in this Manual

R450 Rack Mount Data Collector is a trademark of Neptune Technology Group Inc. R450 is a trademark of Neptune Technology Group Inc. N_SIGHT is a registered trademark of Neptune Technology Group Inc. R450 System is a trademark of Neptune Technology Group Inc. Other brands or product names are the trademarks or registered trademarks of their respective holders.

FCC Notice

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy, and if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation.
If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio / TV technician for help.

RF Exposure Information

This equipment complies with the FCC RF radiation requirements for uncontrolled environments. To maintain compliance with these requirements, the antenna and any radiating elements should be installed to ensure that a minimum separation distance of 150 cm is maintained from the general population.

CAUTION: Changes or modifications not expressly approved by Neptune Technology Group could void the user's authority to operate the equipment.

Industry Canada

This Class B digital apparatus meets all requirements of the Canadian Interference Causing Equipment Regulations. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Cet appareillage numérique de la classe B répond à toutes les exigences de l'interférence canadienne causant des règlements d'équipement. L'opération est sujette aux deux conditions suivantes: (1) ce dispositif peut ne pas causer l'interférence nocive, et (2) ce dispositif doit accepter n'importe quelle interférence reçue, y compris l'interférence qui peut causer l'opération peu désirée.
Professional Installation

In accordance with Section 15.203 of the FCC rules and regulations, the R450 Rack Mount Data Collector must be professionally installed. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

Important Safety Precautions

Review the following precautionary measures prior to installation.

CAUTION: Refer installation and service to qualified service personnel only.

- Review the following precautionary measures prior to installation. Connections to the AC mains must be performed by a licensed electrician. No user-installable parts inside.
- Installation must be done in accordance with the instructions contained in this manual.
- Installation must be done in accordance with the National Electrical Code (NEC), NFPA 70 or Canadian Electrical Code (CEC), CSA C22.2, No. 1.
- In particular, installation must be done in accordance with NEC Article 810 or CEC Section 54.
- This unit is not intended to be powered directly from the Main Distribution System.

WARNING: Risk of explosion if UPS battery is replaced by an incorrect type. Dispose of used batteries according to the manufacturer's instructions.
Installations that Require Digging

If the installation requires digging, review the following warning.

WARNING: If the installation site requires digging, survey the area for concealed hazards. Call 811, the Call Before You Dig phone center, before proceeding. Be sure to locate any electric, natural gas, and water lines as well as cable and phone lines. In some states and jurisdictions, it is the law. Most state laws require at least two to three full work day’s notice.

Antenna Alert

If installing or removing an antenna, review the following warnings.

WARNING: Antenna contact with high voltage wires can result in death. Watch for overhead electric power lines when erecting the antenna and mast. For proper installation and grounding of the antenna, please refer to National Electrical Code (NEC) Article 810 and Canadian Electrical Code (CEC) Section 54.

WARNING: Do not mount antennas on utility poles, electric service masts, or other structures carrying electric light or power wires. Outdoor antennas and coaxial cables must maintain clearance of at least 2 feet (0.6 m) from power or light wires carrying 250V or less, or at least 10 feet (3.0 m) from power wires carrying more than 250V per NEC Article 810 and CEC Section 54.
Multiple RMDC Not Syncing with Host Database ..52
Storm Damage Affecting Multiple Sites ...52
 First Steps ...52
 Initial Site Activities ..53
Checking the General Health of Each Module ..53
 CPU Board Power and Activity Visual Check ..53
 Radio Power Visual Check ..55
Checking the Backhaul Modem Power and Connectivity56
 CalAmp Vanguard Modem Visual Check ...56
Additional Detail Checks ..57
 Verify Main Power ...57
 Verifying Switched DC Power ...58
 Verifying Cellular Modern Power ...59
Verifying Connectivity ..59
 CalAmp Vanguard Modern ..59
 Ethernet ..60
 Verifying Radio and NTG Modern Functionality Using the MIU60
RMDC is Syncing but Not Supplying MIU Data ..61
 Initial Observations ...61
Radio Transmits but ALM Indicator Flashes ..61
 Measuring the VSWR ..61
 The Radio Never Transmits ..62
 Reduction in Amount of Data Collected ...63
Contacting Customer Support ..64
 By Phone ...64
 By Fax ..64
 By Email ...64
Appendix A: RF Antenna Installation

- RF Antenna Overview ... 65
 - Mounting the Antenna .. 65
 - Mounting the Antenna Mast .. 66
 - Site Recommendations .. 66

- Feed Line and Antenna Recommendations 67
 - Feed Line ... 67
 - Feed Line Requirements .. 67
 - Cable Guidelines ... 68
 - Neptune Part Numbers ... 69
 - Antenna ... 70
 - Requirements .. 71
 - System Certification .. 71

- Power Measurement ... 72
- Coax Cable Loss .. 72
- VSWR Calculation ... 75
 - Using a Wattmeter and a Handheld 450MHz Radio 77
 - Using the AEA 140-525 Antenna Analyzer 78
 - Taking the Reading and Calculating VSWR 78

- General Installation Guidelines ... 79
 - Unpacking .. 79
 - RF Antenna Installation Kit .. 79

- Tools and Materials .. 80
 - Installing the RF Antenna .. 81
 - Mounting the RF 450 MHz Antenna 81
 - Mounting the Antenna Mast to the Building 82
 - Attaching the RF 450 MHz Antenna Cable 83
 - Weatherizing the Cable Connections 84

- Troubleshooting the RF Antenna .. 84
 - Equipment Required .. 84
 - Testing the RF Antenna ... 85
Figure 1 – R450™ Rack Mount Data Collector .. 1
Figure 2 – Wall-Mount Installation ... 3
Figure 3 – Pole Installation .. 4
Figure 4 – R450 Rack Mount Data Collector .. 12
Figure 5 – RF 450 MHz Antenna ... 12
Figure 6 – R450 Rack Mount Data Collector .. 15
Figure 7 – RF 450 MHz Antenna Connection .. 17
Figure 8 – Antenna Connections ... 17
Figure 9 – Ground Wire ... 18
Figure 10 – Items for Cellular Antenna ... 19
Figure 11 – Attaching the Cellular Antenna .. 19
Figure 12 – Tighten Bolt for Cellular Antenna .. 20
Figure 13 – Cable to Cellular Antenna ... 20
Figure 14 – Cellular Antenna Connection at Base .. 20
Figure 15 – Weatherizing Connections .. 21
Figure 16 – Weatherizing the Base Connection ... 22
Figure 17 – Weatherizing the Antenna Connection .. 22
Figure 18 – RMDC Mounted on Wall ... 24
Figure 19 – Adding Cables to the RMDC ... 25
Figure 20 – Ethernet Port Connection ... 26
Figure 21 – Feed-Through Assembly ... 27
Figure 22 – RJ45 Ethernet Plug ... 27
Figure 23 – Ethernet Plug Terminated ... 27
Figure 24 – Ethernet Plug Receptacle ... 27
Figure 25 – Connecting the RMDC ... 28
Figure 26 – Main Breaker Switch .. 29
Figure 27 – Modem in R450 RMDC ... 29
Figure 28 – Vanguard Modem Back Panel .. 30
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>USB Port on CPU Board</td>
<td>32</td>
</tr>
<tr>
<td>30</td>
<td>Collector’s Internal Power Supply LEDs</td>
<td>32</td>
</tr>
<tr>
<td>31</td>
<td>Activating the MIU</td>
<td>34</td>
</tr>
<tr>
<td>32</td>
<td>Email Sent from RMDC</td>
<td>35</td>
</tr>
<tr>
<td>33</td>
<td>Radio TX Light</td>
<td>35</td>
</tr>
<tr>
<td>34</td>
<td>Unit Door Locks</td>
<td>36</td>
</tr>
<tr>
<td>35</td>
<td>Outdoor UPS (Closed)</td>
<td>37</td>
</tr>
<tr>
<td>36</td>
<td>Outdoor UPS (Cover Removed)</td>
<td>37</td>
</tr>
<tr>
<td>37</td>
<td>Strut Channel or Wall Mounting</td>
<td>44</td>
</tr>
<tr>
<td>38</td>
<td>Pole Mounting Straps</td>
<td>44</td>
</tr>
<tr>
<td>39</td>
<td>Wire Input and Output Connectors</td>
<td>46</td>
</tr>
<tr>
<td>40</td>
<td>RMDC Power Plug</td>
<td>47</td>
</tr>
<tr>
<td>41</td>
<td>LEDs Above CPU</td>
<td>54</td>
</tr>
<tr>
<td>42</td>
<td>Ethernet Status LEDs</td>
<td>55</td>
</tr>
<tr>
<td>43</td>
<td>Radio LEDs</td>
<td>55</td>
</tr>
<tr>
<td>44</td>
<td>Modem Indicator LEDs</td>
<td>56</td>
</tr>
<tr>
<td>45</td>
<td>Radio Modem Power Front Panel Connector</td>
<td>57</td>
</tr>
<tr>
<td>46</td>
<td>RMDC Power Supply</td>
<td>58</td>
</tr>
<tr>
<td>47</td>
<td>Radio Modem Power Front Panel Connector</td>
<td>58</td>
</tr>
<tr>
<td>48</td>
<td>Vanguard Modem Power Connector</td>
<td>59</td>
</tr>
<tr>
<td>49</td>
<td>CalAmp Vanguard Modem with RSSI LED</td>
<td>59</td>
</tr>
<tr>
<td>50</td>
<td>NTG Modem Status LEDs</td>
<td>60</td>
</tr>
<tr>
<td>51</td>
<td>Standoff Mounting Bracket</td>
<td>80</td>
</tr>
<tr>
<td>52</td>
<td>RF 450 MHz Antenna</td>
<td>80</td>
</tr>
<tr>
<td>53</td>
<td>RF 450 MHz Antenna to be Mounted</td>
<td>82</td>
</tr>
<tr>
<td>54</td>
<td>Securing the Pole Bracket</td>
<td>82</td>
</tr>
<tr>
<td>55</td>
<td>Lining Up Second Bracket</td>
<td>83</td>
</tr>
<tr>
<td>56</td>
<td>RF 450 MHz Antenna Connection</td>
<td>83</td>
</tr>
<tr>
<td>57</td>
<td>Weatherizing the RF Antenna Connection</td>
<td>84</td>
</tr>
</tbody>
</table>
Figure 58 – Collector Search ...87
Figure 59 – Collector Search Results ..88
Figure 60 – Create a New Collector Window89
Figure 61 – Collector Network Setting Tab ...91
Figure 62 – Delete Confirmation Dialog Box92
Figure 63 – Save USB Build ...93
Figure 64 – Thumb Drive Created ...93
Figure 65 – Straight-Through Ethernet Cable95
Figure 66 – RJ-45 Crossover Ethernet Cable95
This page intentionally left blank
Table 1 – R450™ RMDC Cellular Modem Components List (P/N 12799-800) 8
Table 2 – R450™ RMDC Ethernet Components List .. 9
Table 3 – Electrical Specifications ... 11
Table 4 – Environmental Conditions .. 11
Table 5 – Recommended Tools and Materials ... 13
Table 6 – R450 RMDC Pole Mounting Hardware Recommendations 16
Table 7 – Installing a Wall Mount System ... 23
Table 8 – R450 RMDC Wall Mounting Hardware Recommendations 24
Table 9 – Lights on the CPU Board ... 33
Table 10 – Radio Tx Light - Identify Problem ... 35
Table 11 – UPS Specifications ... 38
Table 12 – Input Specifications ... 38
Table 13 – Output Specifications ... 38
Table 14 – Battery Specifications .. 39
Table 15 – Physical Specifications ... 39
Table 16 – Safety Specifications .. 39
Table 17 – Environmental Specifications ... 39
Table 18 – UPS Safety Checklist ... 40
Table 19 – Battery Safety Checklist .. 41
Table 20 – RMDC Does not Power Up .. 48
Table 21 – UPS Status LEDs ... 48
Table 22 – Verify UPS is Producing Correct Voltage .. 49
Table 23 – Visual Check Modem RSSI and SVC LEDs .. 56
Table 24 – Modem Status LEDs .. 57
Table 25 – Material Needed for Cable Installation ... 68
Table 26 – Neptune Part Numbers for Cable .. 69
Table 27 – Connectors and Accessories .. 69
Table 28 – Antenna Specifications ... 70
Table 29 – Power Measurement to Return Loss and VSWR Conversion Table -Part I 72
Table 30 – Power Measurement to Return Loss and VSWR Conversion Table -Part II 73
Table 31 – Coax Cable Loss Table .. 75
Table 32 – Recommended Tools and Materials ... 80
Table 33 – Collector Details .. 90
Table 34 – Collector Network Settings ... 91
Table 35 – Cable Color Code Table .. 96
Table 36 – Coax Cable Recommendations for Cellular Antenna 97
Table 37 – Recommended Stainless Steel Strut Clamps .. 99
Chapter 1: Product Description

This chapter introduces the installation process. It explains the focus of the guide, the pre-installation personnel responsibilities, and general information on technical support.

General Product Overview

This section provides a general description of the R450™ Rack Mount Data Collector (RMDC).

The RMDC receives, stores, and communicates meter reading data to the Neptune host software. The RMDC collects meter reading data from Neptune’s R450™ Meter Interface Unit (MIU) interfacing with Neptune’s absolute encoder register. This data can be uploaded to the Customer Information System (CIS) and sent to the utility billing system for processing.

The RMDC operates in frequencies in the 450-470 MHz licensed band. A Federal Communications Commission (FCC) license is required prior to installation of the system.
Before you Begin

Before you install the RMDC, it is important to become familiar with the unit and its components. This guide is intended for installer and is designed to help in the installation process. It contains information on the components and specifications, the site selection, and the actual installation of the unit.

WARNING: If the installation site requires digging, survey the area for concealed hazards. Call 811, the Call Before You Dig phone center, before proceeding. Be sure to locate any electric, natural gas, and water lines as well as cable and phone lines. In some states and jurisdictions, it is the law. Most state laws require at least two to three full work day's notice. Install in accordance with the FCC site license.

Two Versions of RMDC Installation

There are two RMDC versions available depending on the utility's backhaul preference. Each type is powered by external 12V DC power. Power is supplied to the RMDC by an Uninterruptible Power Supply (UPS).

Neptune provides an installation kit for each type of installation. The standard configuration of the RMDC backhaul is a cellular modem. The other backhaul option available is an Ethernet connection.

Backhaul Type

- Cellular modem (P/N 12799-800)
- Ethernet (P/N 12799-810)

The RMDC can be mounted on a wall, a pole, or H-frame.
Determining How to Install the RMDC

Consider the following information.

WARNING: Do not mount the RMDC, antenna mast, antenna, or lead-in conductor to a pole or similar structure carrying open electric light, power wires, or trolley wires over 250 volts. See NEC, Article 810.

Depending upon the availability of communications, you can use a cellular modem or Ethernet backhaul. Use with the selection checklist before installing the RMDC.

Mounting Components

This section describes the various mounting components for the RMDC.

Wall Mount

A wall-mounted RMDC can be installed indoors; however, because the unit uses an external antenna, you need an antenna mast. Refer to Figure 2 for how to mount the RMDC to a wall.

![Figure 2 – Wall-Mount Installation](image-url)
Depending upon the availability of communications, you can use a cellular modem or Ethernet backhaul.

Pole or H-Frame Installation

Use the pole or H-Frame installation to mount the R450 RMDC on an outdoor free-standing pole or H-frame. Refer to Figure 3 for how to install the RMDC on a pole.

![Figure 3 – Pole Installation](image)

Depending upon the availability of communications, you can use a cellular modem or Ethernet backhaul.
Optimizing System Performance

This section addresses situations where the system is functioning, but the R450 RMDC or MIU communication is not performing as expected.

This discussion covers two situations:

- Newly-installed system does not perform per specification.
- Installed system performance degrades suddenly or over time.

Optimizing the Performance of a New System

Before you install the system, Neptune uses computer software and other resources to predict the performance of the system. Each site survey recommends a minimum number of RMDCs to provide the desired performance over a specified coverage area. The survey also recommends antenna placement and looks for potential radio interference. Neptune provides a propagation model which uses sophisticated software to predict the system performance. If you place an RMDC outside the recommended locations, it might not perform well.

CAUTION: If Neptune’s propagation model is not followed, inadequate performance can occur.

Proper Operation

Review the following note.

Owners of both licensed and unlicensed equipment are responsible for the proper operation of their equipment. If it is not operating within specifications, the owner is required to bring the system into compliance or stop using it. The collaborative effort of all the affected parties is required to solve this problem.

It is possible for a piece of equipment to be functioning totally within its required specifications and still cause interference with the R450™ System.
During the initial installation, Neptune advises using a receiver or high-quality spectrum analyzer connected to the antenna to assure the transmit and receive frequencies are free from interference. Additionally, be sure that there are no potentially interfering signals around the frequencies the RMDC uses for transmitting and receiving. The overall noise level can potentially reduce the sensitivity of the RMDC or MIU receivers. A Rohde & Schwarz FSH3.03 or FSH3.23 or equivalent spectrum analyzer is acceptable.

Problems can occur from a number of sources. Some common problems include:

- Improper installation resulting in loose connectors. Refer to "RF Antenna Installation" on page 65 of Appendix A to confirm the correct installation procedures.

 CAUTION: You must provide Appendix A to antenna contractors prior to installation. Failure to follow the procedures in the Appendix can result in poor system performance.

- Local cable systems operating with RF leakage from cables and amplifiers can degrade the performance of the R450 System.

- Local businesses and factories can have equipment that raises the ambient noise level, reducing the ability of the RMDC to hear MIUs.

- Local residences and businesses can have equipment that interferes with the R450 System.

Site surveys often find these problems but cannot detect intermittent, factory shift-related, or other time-specific sources of interference.

Being in close proximity to a high-power commercial broadcast antenna produces a unique set of problems. Loose or badly corroded hardware on or near the site can cause signals from the RMDC or other transmitters near the site to combine with the broadcast signal and produce interfering signals. Incorrectly installed antennas and feed lines can also cause similar problems. The RMDC and other local transmitters themselves can also be a source of re-radiated interference. Additional equipment that your installer recommends can help control these issues.
Terrain and the types of buildings in the area can affect the performance of the R450 System. Hilly or rolling terrain as well as tall buildings can make it difficult to receive even local MIU data. Placement of the MIUs (wall mount and pit style) can be critical in some areas. Additional RMDCs that supplement the problem areas is the best solution in these situations.

Maintaining the Performance of the R450 System

For consistent performance, be sure that you have properly installed all the R450 MIUs so that the R450 System can reliably receive their transmissions.

The Troubleshooting chapter of this guide includes recommendations on how to verify that the RMDC and antenna system are performing up to specification.

Storm activity can degrade the performance of the RMDC. If this happens, check the lightning arrestors and replace them, if defective.

Running the surveys again using the radio receiver can identify new sources of interference. For problems related to specific time periods, run the surveys during those time periods.

RMDC Components

The following section describes the components of the RMDC.

Cellular Modem

The RMDC is mounted on either a pole, wall, or H-Frame. Table 1 on the next page includes the components for the RMDC cellular modem version.
Table 1 – R450™ RMDC Cellular Modem Components List (P/N 12799-800)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>12799-800</td>
<td>R450 Rack Mount, 4G Cellular Modem includes:</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>- Uninterruptible power supply (UPS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 4G/LTE cellular antenna</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 6-foot cellular coax cable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Strut clamp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- RJ45 connector,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Enclosure key</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Manual</td>
<td></td>
</tr>
<tr>
<td>12896-001</td>
<td>Antenna, RF Omni (mounting hardware included)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Coax cable (see Appendix A, "RF Antenna Installation" on page 65)</td>
<td>As required</td>
</tr>
<tr>
<td>13751-001</td>
<td>Antenna, 4G LTE cellular (included with the RMDC)</td>
<td>1</td>
</tr>
<tr>
<td>10046-112</td>
<td>Coax Cable, six-foot, cellular antenna (included with the RMDC)</td>
<td>1</td>
</tr>
<tr>
<td>13750-001</td>
<td>Strut clamp, 3/4-inch, stainless steel (included with RMDC)</td>
<td>1</td>
</tr>
<tr>
<td>13450-200</td>
<td>Uninterruptible Power Supply (UPS) kit (includes UPS, pole/wall mounting bracket, DC power cord, DC cord grip, and stainless steel clamps). Other vendors supply wall mounting hardware.</td>
<td>1</td>
</tr>
<tr>
<td>12835-002</td>
<td>RMDC Installation and Maintenance Guide</td>
<td>1</td>
</tr>
</tbody>
</table>

The cellular modem requires a System Information Manager (SIM) card which must be ordered separately. To obtain a SIM card, contact your preferred cellular service provider and give them the modem Mobile Equipment Identifier (MEID) and International Mobile Equipment Identifier (IMEI) numbers.
Table 2 shows the parts included in the RMDC Ethernet kit.

Table 2 – R450™ RMDC Ethernet Components List

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>12799-810</td>
<td>R450 Rack Mount, Ethernet version includes: • Uninterruptible power supply (UPS) • 4G/LTE cellular antenna • 6-foot cellular coax cable • Strut clamp • RJ45 connector • Enclosure key • Manual</td>
<td>1</td>
</tr>
<tr>
<td>12896-001</td>
<td>Antenna, RF Omni (mounting hardware included)</td>
<td>1</td>
</tr>
<tr>
<td>12896-001</td>
<td>Coaxial cable (see Appendix A, "RF Antenna Installation" on page 65)</td>
<td>As required</td>
</tr>
<tr>
<td>13450-200</td>
<td>UPS Kit (includes UPS, pole/wall mounting bracket, DC power cord, DC cord grip, and stainless steel clamps). Wall mounting hardware to be supplied by others</td>
<td>1</td>
</tr>
<tr>
<td>13138-001</td>
<td>External RJ45 Plug Kit (included with R450 RMDC - Ethernet version)</td>
<td>1</td>
</tr>
<tr>
<td>12835-002</td>
<td>RMDC Installation and Maintenance Guide</td>
<td>1</td>
</tr>
</tbody>
</table>
This page intentionally left blank.
Chapter 2: General Installation Guidelines

This chapter describes the specifications for the R450™ Rack Mount Data Collector (RMDC). It includes information on storage, unpacking, preliminary tests, tools, materials, site selection, and installation of the RMDC.

RMDC Specifications

This section provides the specifications of the RMDC.

Electrical Specifications

Table 3 – Electrical Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Power</td>
<td>12V DC, 7A</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>84 Watts</td>
</tr>
</tbody>
</table>

Environmental Conditions

Table 4 – Environmental Conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>-22° to 140°F (-30° to 60°C)</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-40° to 185°F (-40° to 85°C)</td>
</tr>
<tr>
<td>Operating Humidity</td>
<td>0 to 95% Non-condensing</td>
</tr>
<tr>
<td>Environmental Rating</td>
<td>NEMA 4X enclosure box</td>
</tr>
<tr>
<td>Operating Altitude</td>
<td>Less than 6561 feet (2000 meters)</td>
</tr>
</tbody>
</table>

Mechanical Specifications

The weight of the RMDC is 100 lbs.

RMDC Footprint

The RMDC measures 24”h x 27”w x 23”d.
Chapter 2: General Installation Guidelines

Storage

Upon receipt, inspect shipping containers and their contents for damage prior to storage.

After inspection, store the cartons in a clean, dry environment where the temperature remains between -40° and 185°F (-40° and 85°C).

Unpacking

As with all precision electronic instruments, handle the RMDC with care; however, no special handling is required.

After unpacking the RMDC, inspect it for damage. If any parts of the RMDC appear to be damaged or prove to be defective upon installation, notify your Neptune sales representative. If the unit or item requires reshipment, use the original cardboard box and packing material.

RMDC Installation Kits

The RF 450 MHz antenna and accessories are now ordered separately from the RMDC. The RF 450 MHz antenna, coaxial cables, and coaxial connectors must be ordered as accessories. See "RF Antenna Installation" in Appendix A for a list of the antenna accessories and cables.
Table 5 below shows the recommended tools and materials you need to successfully install the RMDC.

Some items do not apply to your specific installation, and the list does not contain all tools or materials depending on which installation method you use.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description/Recommendation</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool Kit</td>
<td>Contains standard tools including:</td>
<td>Various installation procedures performed by the installer.</td>
</tr>
<tr>
<td></td>
<td>• Assorted screwdrivers (medium, Flat-Head (slotted), Phillips head)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cordless electric drill/assorted bits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Adjustable wrench</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Standard socket wrench set</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Standard box-end wrench set</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hammer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Channel locks</td>
<td></td>
</tr>
<tr>
<td>UV-Stable Ties</td>
<td>8" and 12" (20.32 cm and 30.48 cm)</td>
<td>Securing smaller short coaxial.</td>
</tr>
<tr>
<td>Cable Hangers</td>
<td>Various sizes</td>
<td>Securing coaxial cable. For larger coaxial (1/2" diameter and larger), secure to tower or structure per manufacturers recommendations.</td>
</tr>
<tr>
<td>RMDC Key</td>
<td>Key for lock on unit</td>
<td>Securing the unit.</td>
</tr>
<tr>
<td>Coaxial Grounding Kit</td>
<td>SG12-06B2A for 1/2" LDF4-50 Coax or SG78-06B2A for 7/8" AVA5-50 Coax</td>
<td>Grounding coaxial cable (see Andrew Bulletin 17800B-JC).</td>
</tr>
<tr>
<td>Coaxial Hoisting Grips</td>
<td>As recommended by coaxial cable manufacturer (see Andrew Bulletin 17800B-JC)</td>
<td>For tower and monopole installations - hoist and secure coaxial</td>
</tr>
<tr>
<td>Personal Protective Equipment (PPE)</td>
<td>Wear OSHA approved PPE as required. Safety glasses must meet ANSI Z87.1</td>
<td></td>
</tr>
</tbody>
</table>
R450 MIU and Magnet

If you have R450 MIUs already installed, you can use these to test if the RMDC is receiving readings. However, it is recommended that you take an R450 MIU and Neptune magnet with you when you install the RMDC. These items are needed to test the unit. See "Swiping the MIU" on page 34.

When you install the R450 MIU, be sure that the N_SIGHT PLUS host software is running and that you have an R450 MIU and magnet with you. Use the R450 MIU and magnet to test the unit.
Chapter 3: Installing the R450™ RMDC

This chapter details the installation instructions for the R450™ Rack Mount Data Collector (RMDC). There are two installation options:

- "Mounting the RMDC to a Pole or H-Frame" below
- "Installing the R450™ RMDC " above

Mounting the RMDC to a Pole or H-Frame

This section provides information on mounting the RMDC to a pole or H-frame.

Locating the Site

Choose a location that does not interfere with any other wiring and is easily accessible. After selecting a site, complete the following procedures.

Mounting Recommendations

WARNING: Outdoor antennas and coaxial cables should maintain a clearance of at least 2 feet (0.6 m) from open electric light or power service conductors of 250 volts or less. If the power wires are more than 250V, maintain a clearance of at least 10 feet (3.0 m) per NEC Article 810 and CEC Section 54.

You can mount the RMDC to a pole (4 inch or larger) using two 3/4-inch wide stainless steel straps (Band-It #C20699 strap, #C25699 buckle, and #C00169 standard tool). Other vendors supply the straps, buckles, and standard tools. Hardware needs to be corrosion resistant and coastal areas can use stainless steel.

Figure 6 – R450 Rack Mount Data Collector
Mounting Hardware Recommendations

Table 6 lists installation types and the recommended mounting hardware to use.

Table 6 – R450 RMDC Pole Mounting Hardware Recommendations

<table>
<thead>
<tr>
<th>Installation Type</th>
<th>Comments</th>
<th>Recommended Mounting Hardware (supplied by other vendors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Pole</td>
<td>2-inch to 4-inch diameter galvanized steel, Schedule 40</td>
<td>• Slotted or half slot steel strut channel (1-5/8" x 1-5/8" x 22" L), two mounted to the back of the R450 RMDC enclosure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3/8"-16 x 1" Grade 8 (A490) bolts, four minimum<sup>1</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3/8"-16 nuts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3/8" fender washers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Two steel strut clamps (2" to 4" depending on pole size)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Optional: 1/4"-20 x 1" Grade 8 (A490) bolts; use a minimum of eight; also, 1/4"-20 nuts and 1/4" fender washers</td>
</tr>
<tr>
<td>Large Pole</td>
<td>4-inch diameter or larger</td>
<td>Use two 3/4" wide stainless-steel straps (Band-It #C20699 strap, #C25699 buckle, and #C00169 standard tool)</td>
</tr>
<tr>
<td>2-Pole "H-Frame" Strut Channel</td>
<td>Recommended minimum pole size is 2-inch diameter galvanized steel, Schedule 40</td>
<td>3/8"-16 x 1" bolts, 3/8"-16 spring nuts, and 3/8" washers; use a minimum of four 3/8" bolts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optional: 1/4"-20 x 1" Grade 8 (A490) bolts and 1/4" washers; use a minimum of eight</td>
</tr>
</tbody>
</table>

¹ Note: If mounting to the shallower 13/16" depth strut channel (1-5/8" x 13/16"), then 7/8" long bolts are recommended to keep from bottoming out.

² Note: Hardware listed is the minimum allowable recommended hardware. Additional provisions can be necessary for high wind areas.

For pipe mounting, use Schedule 40 or Schedule 80 galvanized steel pipe with at least a 2-inch or larger diameter. Seat the pipe per local codes.
Attaching Cables for the RMDC

The corresponding sections detail how to attach the following components:

- RF 450 MHz antenna cable
- Ground wire
- Cellular antenna
- AC Power plug

Figure 7 – RF 450 MHz Antenna Connection

Attaching the RF 450 MHz Antenna Cable

To attach the RF 450 MHz antenna cable, complete the following steps.

1. Locate the RF 450 MHz antenna cable that extends from the RF 450 MHz antenna cable conduit.
2. Connect the RF 450 MHz antenna cable to the RF 450 MHz antenna connector located on the bottom of the RMDC. See Figure 8
3. Tighten the coaxial connector to 15 - 20 in-lb (1.7 - 2.2 Nm) for N-type connector.

Figure 8 – Antenna Connections
WARNING: Give special consideration when the RMDC you installed is inside a building.

Connect the outer conductor (shield) of the coaxial cable to the earth (grounded) at the entrance to the building using the appropriate coax grounding kit. Be sure this is done in accordance with applicable national electrical installation codes (Section 820.93 of the National Electrical Code (NEC), ANSI/NFPA 70).

Connecting the Ground Wire

To attach the ground wire, complete the following steps.

1. Locate the lightning protection system ground for the site.
2. Connect the external ground lug of the RMDC to the lightning protection system ground for that site, as illustrated in Figure 9. Use #6 American Wire Gauge (AWG) copper wire with a minimum temperature rating of 75°C.
3. Tighten with a flathead screwdriver. Torque to 35 in-lb. (4.0 Nm).

Figure 9 – Ground Wire

If you are using an Ethernet backhaul, see "Connecting the Ethernet Cable" on page 26.
Mounting the Cellular Antenna

Neptune recommends mounting the cellular antenna to the tower or mast. Make sure the tower (or mast) does not obscure the line of sight path to the nearest cellular carrier’s tower.

If the cellular modem RSSI signal level is marginal or weak, relocate the cellular antenna to the opposite side of the tower (or mast).

To mount the cellular antenna, complete the following steps.

1. Locate the cellular antenna, and strut clamp. See Figure 10.

2. Using the 3/4-inch strut clamp, attach the cellular antenna to one side of the top strut channel connected to the back of the RMDC, as illustrated in Figure 11.

Figure 10 – Items for Cellular Antenna

Some installations require a longer coax cable for the cellular antenna connection. See "Appendix D: Cellular Antenna Coax Cable" for recommendations.

Figure 11 – Attaching the Cellular Antenna
3. Using a 3/8-inch socket wrench, tighten the bolt for the strut clamp around the cellular antenna, as illustrated in Figure 12.

Figure 12 – Tighten Bolt for Cellular Antenna

4. Connect the cable to the cellular antenna before connecting it to the base of the RMDC. See Figure 13.

5. Tighten the coaxial cable connection to 14 in-lb. (1.58 Nm).

Figure 13 – Cable to Cellular Antenna

6. Connect the cellular antenna cable to the base of the RMDC. See Figure 14.

7. Tighten to 14 in-lb. (1.58 Nm).

Figure 14 – Cellular Antenna Connection at Base
WARNING: Give special consideration when the RMDC is installed inside a building.

The screen (shield) of the coaxial cable must be connected to earth (grounded) at the entrance to the building. Do this in accordance with applicable national electrical installation codes (Section 820.93 of the NEC, ANSI/NFPA 70).

Attaching the Power Plug to the RMDC

Attach the circular power plug to the bottom of the RMDC. Push the connector plug upward while rotating the outer sleeve clockwise until you feel engagement.

Weatherizing the Cable Connections

Complete the following instructions to weatherproof the cables using the 3M Scotch® Wireless WK-101 or an equivalent weatherproofing kit.

1. Using the weatherizing kit, start the tape at the bottom of the cellular antenna connection as illustrated in Figure 15.
2. Wrap the tape around the connection several times; slowly work your way up to weatherize your connection at the base.
3. Wrap the 3M Butyl Mastic Tape 2212 according to the detailed installation instructions in the 3M Scotch® Wireless Weatherproofing kit.
4. Wrap the entire section of cable with one or two layers of half-lapped 2-inch (51 mm) wide Scotch® Super 33+™ Vinyl Electrical Tape according to the detailed installation instructions in the 3M Scotch® Wireless Weatherproofing kit.

Figure 15 – Weatherizing Connections
5. Repeat steps 1 and 2 to weatherize the cellular connection at the base of the RMDC, as illustrated in Figure 16.

For detailed installation instructions on the 3M Scotch® Wireless Weatherproofing Kit (P/N: WK-101) refer to:

6. Repeat steps 1 through 4 to weatherize the RF 450 MHz Antenna feed-in connection at the base of the RMDC, as illustrated in Figure 17.

CAUTION: Wiring the AC-power for the UPS must be done by a licensed electrician. Install the wiring in accordance with the NEC, Canadian Electrical Code (CEC), and local electrical codes.
Installing a Wall Mount System

The following section contains the instructions needed to install a wall mount system.

Table 7 – Installing a Wall Mount System

<table>
<thead>
<tr>
<th>Complete</th>
<th>Instructions</th>
<th>Cellular</th>
<th>Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"Installing the R450™ RMDC" on page 15</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>"Installing the R450™ RMDC" on page 15</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>"Mounting the Cellular Antenna" on page 19</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>"Connecting the Ethernet Cable" on page 26</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td>"Installing the R450™ RMDC" on page 15</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Mounting the RMDC to a Wall

Choose a location that does not interfere with any other wiring and is easily accessible.

Mounting hardware (screws, bolts, slotted or half-slot steel strut channels, spring nuts, and strut clamps) for wall or strut channel installations, are provided by the party responsible for the installation. Hardware needs to be corrosion resistant and coastal areas can use stainless steel.

To mount the RMDC to a wall as illustrated in Figure 18 on page 24, use the following mounting hardware recommendations shown in Table 8 on the next page.
The mounting hardware listed in Table 8 is supplied by other vendors and should be corrosion resistant. Coastal areas can use stainless steel.

Table 8 – R450 RMDC Wall Mounting Hardware Recommendations

<table>
<thead>
<tr>
<th>Installation Type</th>
<th>Comments</th>
<th>Recommended Mounting Hardware (supplied by installation vendors)</th>
</tr>
</thead>
</table>
| Wall - strut channel | Mounting the RMDC to the strut channel that is mounted to the wall | Use the following:
 • Two pieces of slotted or half-slot steel strut channel (1-5/8” x 1-5/8” x 22” L)
 • 3/8”-16 x 1” Grade 8 (A490) bolts
 • 3/8”-16 spring nuts
 • 3/8” washers
 • Use minimum of four 3/8” bolts.
 Optional:
 • 1/4”-20 x 1” Grade 8 (A490) bolts
 • 1/4” washers; use a minimum of eight |
Table 8 – R450 RMDC Wall Mounting Hardware Recommendations (continued)

<table>
<thead>
<tr>
<th>Installation Type</th>
<th>Comments</th>
<th>Recommended Mounting Hardware (supplied by installation vendors)</th>
</tr>
</thead>
</table>
| Wall - direct | Mounting RMDC directly to wall | Use the following:
 - 1/4" x 1-3/4" wood screws or
 - 1/4" x 1-3/4" masonry screws (for example Tapcon HW4-134)
 - Use a minimum of eight screws |

Connecting Antenna Cables to the RMDC

The RF 450 MHz antenna and the communications antenna connect on the outside of the building to the RMDC inside the building.

1. Locate an area behind the wall where the cables can thread through to the outside of the building.
2. Secure the cables to the bottom of the RMDC as illustrated in Figure 19.
3. Thread the cables through to the RMDC antenna and mast.
4. Continue to work with the cables on the outside of the building.

Figure 19 – Adding Cables to the RMDC

Mounting the Cellular Antenna

See "Mounting the Cellular Antenna" on page 19

If you are using an Ethernet backhaul, refer to "Connecting the Ethernet Cable" on the next page.
Mounting Hardware

When mounting hardware, consider the following.

Mount the antenna using a unistrut for the collector or on separate mounting hardware. The bracket (P/N: 13750-001) is needed with the cellular kit variant of the R450 RMDC (P/N: 12799-800).

Connecting the Ethernet Cable

This procedure is only for kits using the Ethernet backhaul connection. If you are using a cellular modem and antenna, refer to "Mounting the Cellular Antenna" on page 19.

Prior to connecting to the Ethernet port (10/100/1000 Mbps) of the RMDC, you must run an Ethernet cable to the location of the RMDC. If you installed an Ethernet cable outside, be sure it is shielded and outdoor rated CAT5E or CAT5. For example, a Belden cable (P/N 7919A).

To connect to the Ethernet Port (10/100/1000 Mbps), complete the following steps.

1. Locate the Ethernet port (10/100/1000 Mbps) at the bottom of the RMDC. See Figure 20. Refer to Appendix C "Ethernet Termination" on page 95 for more information.
2. Locate the Ethernet plug that is included with the RMDC. See Figure 21.

![Feed-Through Assembly](image)

Figure 21 – Feed-Through Assembly

3. Assemble the Ethernet plug according to the instructions included. See Figure 22.

![RJ45 Ethernet Plug](image)

Figure 22 – RJ45 Ethernet Plug

4. Terminate the Ethernet jack to the Ethernet cable. See Figure 23. Refer to Appendix C “Ethernet Termination” on page 95

![Ethernet Plug Terminated](image)

Figure 23 – Ethernet Plug Terminated

5. Insert the Ethernet plug into the Ethernet receptacle on the RMDC. See Figure 24.

6. Screw the entire Ethernet plug assembly into the RJ45 Ethernet housing, which is already mounted at the bottom of the RMDC.

7. Tighten the cable fitting until the gasket is tight around the RJ45 cable.

![Ethernet Plug Receptacle](image)

Figure 24 – Ethernet Plug Receptacle
The Ethernet connector is weatherproof (IP67 rated) and does not require weatherproofing wrap.

When the Ethernet port is not in use, cover it with the protective guard (CONEC P/N:17-10002).

Connecting the Cables to the RMDC

Connect the cables to the RMDC by completing the following steps.

1. Locate where the cables connect on the bottom of the RMDC.
2. Secure the cables to the bottom of the RMDC as illustrated in Figure 25.
3. Thread the cables through to the RF 450 MHz Antenna.
4. Wire the DC-power as described in "Installing the R450™ RMDC" on page 15.
5. Weatherproof all coax cables using the weatherizing kit.
6. Verify all the connections as described in "Testing the Connections" on page 33.
Activating the RMDC

To activate the RMDC, complete the following steps.

1. Open the door of the power box at the AC-power source.
2. Apply power from the main breaker switch as illustrated in Figure 26.
3. Close the door of the AC-power box.
4. Turn on the disconnect switch.
5. Turn on the UPS using the internal on-off switch.
6. Connect the DC power cable to the bottom of the RMDC.

Figure 26 – Main Breaker Switch

Configuring the Cellular Modem

The following list of equipment is needed to configure the cellular modem.

- Laptop or PC with Ethernet network port
- CalAmp Vanguard modem and the modem's *Quick Start Guide*
- Ethernet patch cable

To configure the modem, complete the following steps.

1. Follow the instruction provided in the CalAmp Vanguard modem *Quick Start Guide*.

 To use the modem, activate it for your specific carrier.

 2. Turn off the power to the RMDC.

 3. Remove the modem from the RMDC. See Figure 27.

Figure 27 – Modem in R450 RMDC
4. Insert the SIM card with the gold side up into the SIM card slot on the back of the modem. Push the card completely into the slot until it clicks in place. See Figure 28.

Figure 28 – Vanguard Modem Back Panel

5. Connect the modem to the laptop using the Ethernet cable.
6. Turn on the power for the RMDC.
7. Open a Web browser and in the address bar type the IP address 192.168.1.50.
 The connection log on window appears.
8. Type admin in the User Name field.
9. Type your password.
10. Click OK.

On the Unit Status page, the WAN status reads DOWN until the cellular connection is enabled. Before activating the unit, select your carrier(s), activate the modem, and if applicable, activate your SIM card.

Selecting the Carrier

To select a carrier, with the model still connected to the laptop complete the following steps.

1. Select Cell Connection from the Main Navigation Panel and select the Carrier tab.
2. Select your carrier from the list provided.

You cannot select the same carrier for primary and secondary. Select Global System for Mobile communication (GSM) for any GSM carrier.

If you have more than one carrier, select whether the cell connection is on the primary or secondary carrier, or enable automatic switching, if possible.
3. Click **Save**.
 This action refreshes the page. The information shown depends on the carrier you selected.

4. Configure the applicable settings on the **Settings** tab, for each carrier selected (primary or secondary).

Complete the following instructions that pertain to the carrier you selected.

CDMA Settings (Provisioning) Verizon subscribers:
To provision the cellular modem using Code Division Multiple Access (CDMA) setting, complete the following steps.

1. Make sure you have a **strong** or **medium** signal strength (dBm) and **not roaming**.
2. Click the **OTASP** button to start the provisioning process.
3. Verify the unit status.
 The status has updated to show a Mobile Directory Number (MDN). If the number does not appear, your device did not provision properly. Refer to the cellular modem's **User Manual** for manual activation procedures.

GSM Settings (SIM Card Acceptance):
In the GSM settings, the SIM STATUS reads **SIM ACCEPTED**.

Configuration Complete

To verify the service is operational, open a browser on the laptop and navigate to an active Web page (for example: Google.com). If the service is not operational, contact the service provider.

Be sure to maintain the user name, password, and Access Point Name (APN) information the cellular service provides.
Configuring the Collector with the USB Flash Drive

To configure the RMDC with the USB flash drive, complete the following steps.

CAUTION: Operators need to wear a grounded wrist strap to mitigate the effects of Electro-Static Discharge (ESD).

1. Configure the USB flash drive (included with the RMDC) as described in "USB Flash Drive Configuration for RMDC" on page 87.
2. Insert the configured USB flash drive into either one of the two available USB ports on the CPU board.

![USB Port on CPU Board](image1)

Figure 29 – USB Port on CPU Board

3. Make sure the collector’s internal power supply is fully off before re-applying collector power. See Figure 30.
4. Cycle the power to the RMDC.

![Collector's Internal Power Supply LEDs](image2)

Figure 30 – Collector's Internal Power Supply LEDs

During configuration, the unit performs an automated self-reset. The entire process takes approximately five minutes without user intervention.

5. Remove the USB flash drive when configuration is completed.
Completing the Installation

After completing the wiring for the RMDC, you must verify that the unit has been activated.

- Test the connections - lights and audible sounds. See "Testing the Connections" below.
- Swipe a Meter Interface Unit (MIU) and receive the email the host software automatically sends to the installer. See "Swiping the MIU" on the next page.

Testing the Connections

Complete the following instructions to test the connections.

1. Wait approximately 60 seconds after you activate the RMDC and listen for the sequence of several tones and beeps that last approximately five seconds.

2. Check that the blue power light is on at the bottom of the Midland Radio.

3. Check that the power light is on for the modem.
 If the modem finds a network, the power light is solid. For further details, refer to the modem’s Users Manual.

4. If you use the Ethernet backhaul, check the status of the Pri ETH Ethernet connector.
 These lights provide a visual indication of the link status, and network activity.
 - The green Link Integrity light is lit when a valid connection is detected.
 - The yellow Activity light blinks on and off when activity is detected on the wire.

<table>
<thead>
<tr>
<th>Designator</th>
<th>Light Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pri ETH</td>
<td>Green</td>
<td>Link Integrity</td>
</tr>
<tr>
<td>Pri ETH</td>
<td>Yellow</td>
<td>Activity</td>
</tr>
</tbody>
</table>
5. After the RMDC has been powered up for five minutes, remove the USB flash drive from the CPU board.

Connect only the **Pri ETH** Ethernet connector. Do not connect any other component to the **Sec ETH** Ethernet connector.

Field Service Tool

Use the Field Service Tool (FST), Received Signal Strength Indicator (RSSI), MIU Simulator, Collector, and Collector Monitor to verify the RMDC is working properly. See the FST manual for instructions.

Swiping the MIU

Before you can proceed with these steps, the RMDC must be set up in the N_SIGHT PLUS host software. See "Creating a Collector" on page 87 and "Building a USB Drive for Collector Configuration" on page 93 for instructions on setting up the RMDC in the host software. In addition, confirm the Configuration Packet Alarms are set in the host software. To set the alarms, click the **Endpoints** tab, **System Commands**, and then **Alarm Notifications**.

To verify that the RMDC can receive readings from MIUs and can synchronize with the N_SIGHT PLUS host software, complete the following steps.

1. Wait about five minutes after you have powered on the RMDC.
2. Position the Neptune magnet against the left side of the R450 MIU directly in line with the Neptune logo, as shown in Figure 31.
3. Bring the magnet from the side and around the corner to the top of the MIU to swipe it. See Figure 31.

Figure 31 – Activating the MIU
4. When swiped, the RMDC sends an email to the address set up in the host software, similar to the following example.

<table>
<thead>
<tr>
<th>MIU RSSI</th>
<th>Pass [-68]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector RSSI</td>
<td>Pass [-77]</td>
</tr>
<tr>
<td>Register</td>
<td>Valid Read</td>
</tr>
<tr>
<td>Collector</td>
<td>Morris Ave.</td>
</tr>
<tr>
<td>Signal/Noise</td>
<td>49</td>
</tr>
<tr>
<td>Noise</td>
<td>126</td>
</tr>
<tr>
<td>MIU Id</td>
<td>110182462</td>
</tr>
</tbody>
</table>

Figure 32 – Email Sent from RMDC

- Make sure the email comes from the RMDC that you are installing.
- If you do not receive an email, follow the instructions outlined in the next section.

If You Do Not Receive an Email

If you do not receive an email, complete the following steps.

1. Check to see if the Midland Radio is getting power by verifying that the blue power light is on. See Figure 43 on page 55.
2. Check to see if the red Tx light of the Midland Radio is flashing every 10 seconds. See Figure 33

Figure 33 – Radio TX Light

Table 10 – Radio Tx Light - Identify Problem

<table>
<thead>
<tr>
<th>If...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>The red Tx light is not flashing every 10 seconds,</td>
<td>Call Neptune Customer Support. Refer to "Contacting Customer Support" on page 64.</td>
</tr>
</tbody>
</table>
| The red **Tx** light **is** flashing every 10 seconds, but you do not receive emails, | • There could be a problem with the network connection.
• There could be a problem with the N_SIGHT PLUS host software. |
| The problem is with the network concordance, | Refer to "Verifying Connectivity" on page 59. |
Table 10 – Radio Tx Light - Identify Problem (continued)

<table>
<thead>
<tr>
<th>If...</th>
<th>Then...</th>
</tr>
</thead>
</table>
| The problem is with the N_SIGHT PLUS host software. | • Verify the host software is configured to send emails to the correct email address.
• Check the host software to ensure the RMDC is synchronizing. Refer to "Potential RMDC Problems" on page 52. |

Securing the RMDC

After you finish the configuration, complete the following steps to lock the RMDC.

1. Close the door of the RMDC.
2. Using the key that is supplied with the unit, secure both door locks of the RMDC, as illustrated in Figure 34.

Figure 34 – Unit Door Locks
Chapter 4: Uninterruptible Power Supply

This chapter describes the specifications for the Uninterruptible Power Supply (UPS) or backup power solution. It also includes procedures for storing, unpacking and inspecting, installing and connecting the UPS, plus descriptions of tools and materials you use when working with the UPS.

Figure 35 – Outdoor UPS (Closed)

Figure 36 – Outdoor UPS (Cover Removed)
UPS Specifications

This section provides information on the specifications of the UPS.

Table 11 – UPS Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neptune</td>
<td>P/N: 13450-200 (includes pole/wall mounting bracket, DC power cord, and stainless steel clamps)</td>
</tr>
<tr>
<td>UPS Topology</td>
<td>AC to DC rectifier, battery charger, and sealed, valve-regulated, lead acid batteries that are maintenance-free and rechargeable.</td>
</tr>
</tbody>
</table>

Input

Table 12 – Input Specifications

<table>
<thead>
<tr>
<th>Input</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Input Voltage</td>
<td>120 VAC</td>
</tr>
<tr>
<td>Operating Input Voltage Range</td>
<td>100 - 140 VAC</td>
</tr>
<tr>
<td>Input Current</td>
<td>6A</td>
</tr>
<tr>
<td>Operating Frequency</td>
<td>57 - 63 Hz</td>
</tr>
<tr>
<td>AC Input Surge Immunity</td>
<td>ANSI / IEEE C62.41: 6 kV, 1.2 x 50 μs / 3kA, 8 x 20 μs</td>
</tr>
<tr>
<td>AC Connections</td>
<td>Holes for 1/2" conduit connectors; wiring terminals</td>
</tr>
</tbody>
</table>

Output

Table 13 – Output Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Output Voltage</td>
<td>12 VDC</td>
</tr>
<tr>
<td>Output Voltage Range</td>
<td>10 - 14 VDC</td>
</tr>
<tr>
<td>Output Current</td>
<td>13.04 A</td>
</tr>
<tr>
<td>Efficiency: Line / Backup</td>
<td>84 / 95.5%</td>
</tr>
<tr>
<td>Power On / Off Switch</td>
<td>On / off rocker style power switch</td>
</tr>
<tr>
<td>Transfer Time to Backup</td>
<td>0 ms</td>
</tr>
<tr>
<td>DC Connections</td>
<td>Holes for 1/2" conduit connectors; wiring terminals</td>
</tr>
</tbody>
</table>
Battery

Table 14 – Battery Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Type</td>
<td>AGM (12 VDC 7 Ah x 2), sealed, valve-regulated lead-acid (VRLA) battery that is maintenance-free and rechargeable. (EnerSys Genesis P/N: NP7-12TFR)</td>
</tr>
<tr>
<td>Recharge Time to 90%</td>
<td>4 hrs</td>
</tr>
<tr>
<td>Battery Backup Time</td>
<td>24 min @ full load (13.04A)</td>
</tr>
</tbody>
</table>

Physical

Table 15 – Physical Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>12.5” (318 mm) wide x 12” (305 mm) high x 6.5” (165 mm) deep</td>
</tr>
<tr>
<td>Steel Cabinet</td>
<td>All weather NEMA 3R design, UL 50E rain tested, pad lockable enclosure</td>
</tr>
<tr>
<td>Weight</td>
<td>32 lbs (14.5 kg)</td>
</tr>
<tr>
<td>Mounting Option</td>
<td>Pole or wall mounting bracket included</td>
</tr>
</tbody>
</table>

Safety

Table 16 – Safety Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cETLus (Canada & US)</td>
<td>ANSI / UL 60950-1, CAN / CSA C22.2: No. 60950-1-07 Clause</td>
</tr>
<tr>
<td></td>
<td>ANSI / UL 1778, CAN / CSA C22.2: No. 107.3-05 Clause</td>
</tr>
<tr>
<td></td>
<td>ANSI / UL 50E, CAN / CSA C22.2: No. 94-2-07 Clause</td>
</tr>
</tbody>
</table>

Environmental

Table 17 – Environmental Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>• -40° to + 122° F (-40° to +50° C)</td>
</tr>
<tr>
<td></td>
<td>• With BH5 optional battery heater</td>
</tr>
</tbody>
</table>
Checklists

This section provides safety checklists for:

- Handling the UPS and battery
- Unpacking and inspecting the UPS

UPS Safety Checklists

WARNING: The UPS should be installed by people trained in the safe use of high-energy power supplies and their batteries. The installer also should have knowledge of the local electrical code(s) and their safe application.

To prevent accidental shorts, shocks, or electrocutions, never let water enter the UPS. (Rain, a hose, tap, sprinkler output, or road splash.)

Table 18 – UPS Safety Checklist

<table>
<thead>
<tr>
<th>Safety Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Carefully unpack the components and report any shipping or other damage immediately.</td>
</tr>
<tr>
<td>✓ Always assume electrical connections or conductors are live. Turn off all circuit breakers and double-check using a voltmeter before performing installation or maintenance.</td>
</tr>
<tr>
<td>✓ Before installation, verify the input voltage and current requirements of the load meet the UPS's output (see specifications). Verify the line voltage and current meet the UPS's input requirements.</td>
</tr>
<tr>
<td>✓ Place a warning label on the utility panel to tell emergency personnel a UPS is installed.</td>
</tr>
<tr>
<td>✓ Use proper lifting techniques when lifting or moving the UPS or its components.</td>
</tr>
<tr>
<td>✓ Note that this UPS has more than one live circuit. DC power can be present at the output even if the UPS is disconnected from the DC line.</td>
</tr>
</tbody>
</table>
Battery Safety Checklist

WARNING: Battery Emergency Procedures

- If electrolyte splashes on your skin, immediately wash the affected area with water.
- If electrolyte gets into your eyes, wash them for at least 10 minutes with clean running water or a special neutralizing eye wash solution. Seek medical attention immediately.
- Neutralize spilled electrolyte with special neutralizing solutions in a "spill kit" or a solution of 1 lb. (0.45 kg) of baking soda (bicarbonate of soda) in 1 gallon (3.9 L.) of water.

Battery Safety Conditions

Personnel knowledgeable about batteries and the required precautions needed to install and service them.

Always replace batteries with the same type, numbers, and ratings. Never install old or untested batteries. One sealed lead-acid battery is rated to a maximum voltage of 12VDC.

CAUTION: A battery can present a risk of electrical shock and high short-circuit current. Observe the following precautions when working on a battery.

- Remove watches, rings, or other metal objects.
- Use tools with insulated handles.
- Wear rubber gloves and boots.
- Do not lay tools or metal parts on top of the battery.
- Disconnect charging source prior to connecting or disconnecting battery terminals.
- Determine if the battery is inadvertently grounded. If so, remove source from ground. Contact with any part of a grounded battery can result in electrical shock. To reduce the likelihood of shock, remove grounds during installation and maintenance (applicable to equipment and remote battery supplies not having a grounded supply circuit).
- Never dispose of batteries in a fire; they can explode. Follow the manufacturer's directions for safe battery disposal.
- Never open or damage the batteries. Released electrolyte is harmful to the skin and eyes and it can be toxic and hazardous to the environment.
Battery Safety Conditions

<table>
<thead>
<tr>
<th></th>
<th>Battery Safety Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>![checkmark]</td>
<td>Never let live battery wires touch the UPS, the enclosure, or any other metal objects. This can cause a fire or explosion.</td>
</tr>
<tr>
<td>![checkmark]</td>
<td>Lead-acid batteries can release hydrogen gas. Never expose the UPS or enclosure to open flames or sparks to prevent a fire or explosion.</td>
</tr>
<tr>
<td>![checkmark]</td>
<td>Inspect the batteries once a year for signs of cracks, leaks, or swells. Replace as needed.</td>
</tr>
<tr>
<td>![checkmark]</td>
<td>If you have batteries in storage, charge them at least once every three months for optimum performance and to extend their lifetime.</td>
</tr>
</tbody>
</table>

Site Preparation Warnings

This section provides information on site preparation warnings.

Grounding

Consider the following warning concerning grounding the UPS.

WARNING: The UPS must be correctly grounded for proper operation. Older facilities can have inadequate electrical grounding. A qualified electrician must perform an inspection before installation to ensure that grounding meets the local electrical code.
Branch Circuit Breaker Protection

Consider the following warning about branch circuit protection.

WARNING: To provide branch circuit protection, the utility line attached to the UPS's input must be protected by a circuit breaker certified for this use and per the local electrical code. The breaker's minimum size is calculated by the following formula:

\[
\text{Minimum Breaker Size} = \frac{\text{UPS's maximum input current}}{0.8}
\]

The UPS's maximum input current is read off the nameplate. For example, if the nameplate gives the maximum input current as 6A, be sure the circuit breaker is rated at least 7.5A; however, limit breaker size to a maximum of 15A.

Disconnects

Consider the following warning when installing the UPS.

WARNING: The AC input to the UPS must have a readily-accessible disconnect device installed.

Mounting the UPS

This section provides information on mounting the UPS.

A pole / wall mounting bracket is included with the UPS.
Wall Mounting

The UPS’s maximum input current is on the nameplate. For example, if the nameplate gives the maximum input current as 6A, be sure the circuit breaker is rated at least 7.5A.

Secure the UPS to the strut channel or wall using the recommended hardware from Table 8 on page 24.

Figure 37 – Strut Channel or Wall Mounting

The UPS utilizes the same strut channel or wall mounting hardware as the RMDC.

Pole Mounting

To strap mount the UPS to the pole (4-inch to 16-inch diameter), use the two stainless-steel clamps (included).

1. Attach the straps to the UPS mounting bracket.
2. Attach the UPS to the pole.
3. Tighten the straps using a flat-head (slotted) screwdriver.

Figure 38 – Pole Mounting Straps
Connecting the UPS

This section provides information on the tools, materials, and procedures are needed to connect the UPS.

Tools and Materials Required

The following list describes the tools and materials needed to connect the UPS.

- Slotted-tip screwdrivers for tightening screws on terminal blocks
- AC/DC voltmeter
- #2 Phillips Head screwdriver for removing the cover
- Channel lock pliers for tightening cord grip and jam nut
Procedure

To wire the input and output connectors, complete the following steps.

Wiring the Input and Output Connectors

1. Remove the two screws that secure the UPS cover.
2. Remove the UPS cover.

![Figure 39 – Wire Input and Output Connectors](image)

CAUTION: The UPS contains a vent on the upper right side of the case; do not remove this.

Installing and Wiring the UPS

1. Install Liquid-Tight Flexible Non-Metallic Conduit from the disconnect switch to the lower 1/2-inch conduit hole on the side of the UPS.
2. Install the black, white, and green wires through the conduit and terminate to the terminal block inside the UPS.
3. Install the DC cord grip in the upper 1/2-inch conduit hole on the side of the UPS, just above the conduit.
4. Route the open pigtail end of the DC power cable through the cord grip and terminate to the DC terminal block inside the UPS.
5. Tighten the DC cord grip using pliers or a wrench.
6. Attach the power cord to the bottom of the RMDC.
Powering On the UPS

To turn the UPS on, complete the following steps:

1. Turn the UPS power switch ON.
2. Re-install the UPS cover and secure it with the two screws.

Servicing the UPS

This section provides information on servicing the UPS.

CAUTION: Before attempting to service the UPS, verify that the disconnect device is turned OFF. Also verify that the UPS switch is turned OFF.

Checking UPS Status LEDs

This section provides information on checking and troubleshooting the UPS.

If the RMDC does not power up, complete the following steps to check the UPS status:

1. Remove the power plug from the bottom of the RMDC.
2. Measure between pin-1 (+) and pin-2 (-) on the plug.
 The voltage measures 13.5-14.4 VDC. See Figure 40.

Figure 40 – RMDC Power Plug
If

The voltage measurement is good

Then

There is a problem with the RMDC. Refer to "Troubleshooting" on page 51.

The voltage is negative

There is a problem with the UPS wiring. Complete the following steps.

- Remove the UPS cover.
- Correct the wiring issue.
- Recheck wiring.

There is no voltage present or the voltage is low (< 10.5V DC)

Complete the following steps.

- Remove the UPS cover.
- Verify the internal power switch is ON.
- Check the status LEDs inside the UPS. See Table 21.

Table 20 – RMDC Does not Power Up

<table>
<thead>
<tr>
<th>If</th>
<th>Then</th>
</tr>
</thead>
<tbody>
<tr>
<td>The voltage measurement is good</td>
<td>There is a problem with the RMDC. Refer to "Troubleshooting" on page 51.</td>
</tr>
<tr>
<td>The voltage is negative</td>
<td>There is a problem with the UPS wiring. Complete the following steps.</td>
</tr>
<tr>
<td></td>
<td>- Remove the UPS cover.</td>
</tr>
<tr>
<td></td>
<td>- Correct the wiring issue.</td>
</tr>
<tr>
<td></td>
<td>- Recheck wiring.</td>
</tr>
<tr>
<td>There is no voltage present or the voltage is low (< 10.5V DC)</td>
<td>Complete the following steps.</td>
</tr>
<tr>
<td></td>
<td>- Remove the UPS cover.</td>
</tr>
<tr>
<td></td>
<td>- Verify the internal power switch is ON.</td>
</tr>
<tr>
<td></td>
<td>- Check the status LEDs inside the UPS. See Table 21.</td>
</tr>
</tbody>
</table>

Table 21 – UPS Status LEDs

<table>
<thead>
<tr>
<th>LED Indicators</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Solid on = AC is good</td>
</tr>
<tr>
<td></td>
<td>Off = AC failure</td>
</tr>
<tr>
<td>Yellow</td>
<td>Solid on = battery fully charged</td>
</tr>
<tr>
<td></td>
<td>Blinking slowly = battery charging</td>
</tr>
<tr>
<td></td>
<td>Blinking rapidly = battery discharging (possible AC input voltage failure)</td>
</tr>
<tr>
<td>Red</td>
<td>Faulty DC output = fuse can be blown</td>
</tr>
</tbody>
</table>

5. Verify the UPS is producing the correct voltage at the output terminals by measuring across DC+ (red) and DC (black).
 The voltage measures 13.5-14.4 VDC.

This step assumes the AC input voltage is present and the UPS internal switch is ON (battery is charging).
Table 22 – Verify UPS is Producing Correct Voltage

<table>
<thead>
<tr>
<th>If the</th>
<th>Then</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC input voltage is not present</td>
<td>The voltage across DC+ (red) and DC- (black) measures 10.5-12.8 VDC.</td>
</tr>
<tr>
<td>Voltage is less than 10.5 VDC</td>
<td>The battery is fully discharged and must be recharged. Complete the following steps.</td>
</tr>
<tr>
<td></td>
<td>1. Measure the AC input voltage across L1 and N1.</td>
</tr>
<tr>
<td></td>
<td>Verify that the voltage measures 100-140 VAC.</td>
</tr>
<tr>
<td></td>
<td>2. Verify the UPS’s internal switch is ON.</td>
</tr>
<tr>
<td></td>
<td>3. Check the UPS status LEDs. See "UPS Status LEDs" on the previous page.</td>
</tr>
</tbody>
</table>

Checkup Complete

After completing the UPS diagnostics, perform the following steps.

1. Re-install the UPS cover.
2. Secure cover with two screws.

The batteries in the UPS have an expected life span of three to five years in float service applications. Length of service life is directly affected by the number of discharge cycles, depth of discharge, ambient temperature, and charging voltage.
This page intentionally left blank.
Chapter 5: Troubleshooting

This section provides information for possible symptoms, areas of focus, and actions to resolve problems that can arise with your R450™ Rack Mount Data Collector (R450 RMDC).

WARNING: Neptune does not recommend servicing an RMDC during inclement weather.

Equipment Required

The following items are required to troubleshoot the RMDC.

- Keys to access the site and open the RMDC cabinet
- Digital Multimeter with long leads
- Voltage Standing Wave Ratio (VSWR) meter
- Sockets and open-end wrenches to install / remove the RMDC
- Small, medium, and large standard screw drivers
- #1 and #2 Phillips head screw drivers
- Electrical tape and wire ties
- A backup RMDC, if one fails
- RMDC configuration USB flash drive (included with the RMDC)

The USB flash drive must be configured for the specific RMDC.

- Anti-static wrist strap and ground lead with alligator clip for attaching the wrist strap to the RMDC cabinet
- MIU configured for site
- Magnet to swipe the MIU
- R450 System Field Service Tool (FST)
PC Notebook Configuration

To use a notebook computer, consider the following for the CalAmp Cellular Modem:

- Requires an Ethernet patch cable to connect to the network port of the computer.
- Uses a Web-based application, not software, for configuration. Refer to the cellular modem’s Quick Start Guide for log on and setup instructions.

Potential RMDC Problems

The following sections describe problems that can arise and how to handle these potential problems.

Multiple RMDC Not Syncing with Host Database

The following issues can cause syncing problems:

- Host database server is down or not connected to the Internet.
- Remote Internet, phone, cable, or cell service provider is either down or experiencing degraded service.
- Multiple power outages affecting several sites.

Storm Damage Affecting Multiple Sites

One RMDC is not syncing with the host database. Troubleshooting this problem requires going to the RMDC site.

First Steps

Before leaving for the site, assess the health of the RMDC using the host system.

For instructions on how to assess the health of the RMDC, refer to "Using System Health" in the "System Health" topic of the N_SIGHT® PLUS Online Help.
• If the RMDC is offline, this indicates that external power, internal power, CPU, relays, or the backhaul modem is not functioning.

• Some sites are configured so operators can log on to the RMDC remotely. Look at the logs, and watch the system activity. If the RMDC is offline but it is still possible to log on to the system, this indicates that the computer and backhaul modem are both functional.

Initial Site Activities

• Open the RMDC and inspect the equipment.

• Make sure that there is no obvious physical damage to the system, condensate or standing water. For example, burned components or wires can indicate a direct or nearby lightning strike. If there is any evidence of physical damage, replace the RMDC with the spare and contact Neptune to request a Return Material Authorization (RMA) to return the damaged collector.

CAUTION: The ground wrist strap must be clipped to the RMDC’s ground system. Do not touch the computer circuit board or any of the components if you are not wearing the wrist strap. Failure to use the strap can cause damage to the computer due to static electricity discharge.

Checking the General Health of Each Module

This section provides information on the general health of the R450 RMDC’s internal modules.

CPU Board Power and Activity Visual Check

There are two Light Emitting Diodes (LEDs) above the CPU board. See Figure 41 on page 54.

• Green Power LED

• Red HDD LED

The green LED is lit if power is applied to the CPU board. The red LED flashes intermittently to indicate hard drive and CPU activity.
There are two additional Ethernet status LEDs:

- One to the left of the primary Ethernet RJ45 connector that indicates an active link when lit.
- One to the right of the same connector that indicates communication activity.

Connect the Ethernet cable to the **Pri ETH** port. Connection to the **Sec ETH** port can cause unreliable operation.

When functioning properly, the link LED is steadily lit and the activity LED intermittently. Random flashes indicate live network activity. See Figure 42 on page 55.
Radio Power Visual Check

The radio has several indicator LEDs on the front panel. The power LED should be lit blue. See Figure 43. If the amber ALM LED is on or flashing:

- The radio may be malfunctioning.
- The R450 RMDC may be operating on UPS backup power in the event of a main power failure.
Checking the Backhaul Modem Power and Connectivity

This section provides information on visually checking the backhaul modem.

CalAmp Vanguard Modem Visual Check

Look at the indicator LEDs on the modem to verify that the modem is working. See Figure 44 on page 56.

Table 23 – Visual Check Modem RSSI and SVC LEDs

<table>
<thead>
<tr>
<th>If the RSSI and SVC LEDs are</th>
<th>Then</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>The modem is powered.</td>
</tr>
<tr>
<td>not on</td>
<td>There is a power problem with the modem. Verify that the main power is on.</td>
</tr>
<tr>
<td>SVC LED is solid</td>
<td>The modem is connected to the cellular network. See Table 24 on the facing page.</td>
</tr>
<tr>
<td>SVC LED is flashing</td>
<td>The modem is trying to connect to the network. See Table 24 on the facing page.</td>
</tr>
</tbody>
</table>

Figure 44 – Modem Indicator LEDs

The LED behavior is different than Table 24 on the facing page at boot (initial power-up). The proper sequence is:

- All red LEDs
- All amber LEDs
- Off for a moment
- All green LEDs
- All green LEDs flash three times

This indicates a successful Built-In-Self-Test (BIST) and a healthy modem.
The CalAmp Vanguard 5530MC includes a multi-carrier feature which provides more choice in carrier networks and delivers 4G LTE performance with automatic fallback to 3G and 2G legacy GSM and CDMA networks.

Table 24 – Modem Status LEDs

<table>
<thead>
<tr>
<th>Function</th>
<th>Off</th>
<th>Green</th>
<th>Flash Green</th>
<th>Red</th>
<th>Flash Red</th>
<th>Amber</th>
<th>Flash Amber</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSSI</td>
<td></td>
<td>Strong</td>
<td>Weak/None</td>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVC (cellular network connection)</td>
<td>4G</td>
<td>NC</td>
<td>NC</td>
<td>3G/2G</td>
<td>NC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NET</td>
<td>No connectivity</td>
<td>Rx data</td>
<td>Tx data</td>
<td>Rx/Tx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS</td>
<td>Disabled</td>
<td>Fix</td>
<td>Search</td>
<td>no fix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUX</td>
<td>Disabled</td>
<td>Good</td>
<td>Failed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Detail Checks

If any of the previous checks failed, perform the following detail checks. Perform power supply voltage checks one at a time so that a load remains on the power supply. This is especially important for the CPU and modem voltage checks. With no load on the power supply, erroneous values can be measured.

Verify Main Power

It is a good practice to check the main power and make sure it is within specification. If there are no power indications on the RMDC, complete the following.

1. Verify there is power on the upper front panel of the RMDC. Measure the DC voltage at the black and red Anderson connector labeled "Power" on the right side of the front panel. This voltage should measure 13.5 to 14.4V DC when the UPS is switched on and main power into the UPS is present. See Figure 45.

Figure 45 – Radio Modem Power Front Panel Connector
2. Verify the main AC power disconnect device is turned ON.

3. Verify the UPS output voltage. Refer to the "Checking UPS Status LEDs" on page 47.

![Image](image_url)

The RMDC is capable of functioning on voltages as low as 10VDC.

If voltage is not present at the R450 RMDC main power connector, switch OFF the UPS, disconnect the power harness from the R450 RMDC power connector, and ohm-out the harness to the UPS +12VDC terminals. An open or high resistance indicates damage to either the internal or external power harness.

Verifying Switched DC Power

To verify switched DC power, complete the following steps.

1. Turn on the UPS and wait approximately 60 seconds for the R450 RMDC to power up.

 The two right-most green LEDs should flash during this initial 60-second power-on delay.

2. Verify the R450 RMDC internal power supply’s four left-most green LEDs are lit. See Figure 46.

 ![Figure 46 – RMDC Power Supply](image_url)

 If the LEDs are lit, complete the following steps.

3. Verify there is Switched DC power on the upper front panel of the R450 RMDC at the Radio / Modem Power Anderson power connector.

 ![Figure 47 – Radio Modem Power Front Panel Connector](image_url)

 The voltage should measure between 13.5 VDC and 14.4 VDC. If the voltage is above or below these values, the internal power relays or UPS may be defective. Contact Neptune Customer Support for additional guidance.
Verifying Cellular Modem Power

To verify cellular modem power, complete the following steps.

1. Disconnect the power harness from the cellular modem (black 4-pin Molex connector).
2. Verify the voltage is 13.5 VDC to 14.4 VDC between the red and black contacts.
3. Verify the voltage is 13.5 VDC to 14.4 VDC present between the white and black contacts.

Verifying Connectivity

CalAmp Vanguard Modem

To verify connectivity and signal levels, complete the following steps.

1. Locate and identify the RSSI LED light on the modem.
2. Identify the RSSI LED light:
 - Solid = indicates signal strength is strong
 - Blinking = indicates signal strength is medium
 - Off = indicates signal strength is poor, or no signal at all
If the signal strength is poor or if there is no signal at all, there can be something wrong with the antenna. It is also possible that the local cellular service is not working.

For more detailed information on your wireless connection status, connect to the modem’s configuration application. Refer to “Configuring the Cellular Modem” on page 29.

Ethernet

If you use an Ethernet backhaul, then check the status lights on the CPU board. Refer to “Testing the Connections” on page 33.

Verifying Radio and NTG Modem Functionality Using the MIU

To verify that the system is functioning properly, complete the following steps.

For this test to be valid, the R450 RMDC must send regular time beacon transmissions. This is indicated by the TX indicator flashing every ten seconds. See Figure 43 on page 55. If the RMDC does not send time beacons, it automatically fails the test.

1. Obtain a magnet and MIU.
2. Swipe the magnet across the MIU so that it sends out a configuration packet.
3. Watch for the NTG Modem **Rx/Tx** LED "couplet" in the Modern Status Window. This happens within a minute of swiping the MIU.
 - The **Rx** LED flashes followed immediately by a flash of the **Tx** LED. See Figure 50.
 - If the couplet is not observed or only the **Rx** LED flashes, there is an internal problem with the RMDC that can include its configuration, the radio, NTG modem, or the computer.

![Figure 50 – NTG Modem Status LEDs](image-url)
The radio’s **BUSY** indicator can be constantly lit. This is normal.

RMDC is Syncing but Not Supplying MIU Data

If the RMDC is online, this indicates that the computer and the backhaul modem are both working. If the RMDC collects no readings, this indicates that there is a potential problem with the radio and modem.

Troubleshooting this problem requires going to the RMDC site.

Initial Observations

After opening the cabinet, assess the following.

- The RMDC sends out a time beacon every ten seconds. The transmit light on the radio and the NTG modem’s **Tx** LED flashes every ten seconds. See “Radio LEDs” on page 55. Only the red transmit indicator should flash. If the amber **ALM** indicator flashes at the same time, this indicates that there is a problem between the radio’s transmitter and the RF antenna.
- If the transmit indicator does not flash, this indicates that there is a potential problem with the NTG modem, the computer, or the I/O harness to the NTG modem.

Radio Transmits but ALM Indicator Flashes

This requires measuring the VSWR of the antenna system. If the VSWR is greater than 1.5:1, it indicates there is a problem with the RF surge arrestor, feed line or the antenna.

Measuring the VSWR

To measure the VSWR using the MFJ-269 SWR Analyzer, complete the following steps.

1. Make sure the red **Power** button is off. The red button is extended outward.
2. Press the **UHF** button to be sure it is extended outward.
3. Turn the **Frequency** knob fully counter-clockwise. This knob points to 114-170/UHF.
4. Connect the 2-inch attenuator pad to the **Antenna Connector**. Leave the other end open.
5. Press and lock the red **Power** button and the black **UHF** button.
6. Adjust the **Tune** knob to the desired frequency. Sweep the entire 450 - 470 MHz range.
7. Observe the indicated VSWR to ensure it reads 3.0 ± 0.2. This indicates that the unit is calibrated correctly and the batteries are good.
8. Do one of the following:
 - If the reading is outside this range, then try replacing the batteries (eight AA batteries). If this does not improve the readings, the unit needs to be recalibrated.
 - If the reading is within the range, go to step 9.
9. Power off the unit.
10. Remove the attenuator pad and connect the antenna from the bottom of the collector.
11. Press and lock the red **Power** button and the black **UHF** button.
12. Adjust the **Tune** knob for desired frequencies. Look at both the collector receive and transmit frequencies.
13. Observe the indicated **VSWR**.
 A value of 1.0 is ideal but not practical. Typical values are 1.1 to 1.2 for a healthy antenna system.
13. When finished, power off the unit.

If a flashing **SLP** indicator appears in the bottom-right corner of the display, this indicates **Sleep** mode. Simply turn the unit off and then on again.

The Radio Never Transmits

The simplest test is to cycle power on the RMDC to see if the radio starts transmitting.

It can take up to ten minutes for the RMDC to be fully functional.
• If the radio starts transmitting, this indicates that there was a soft failure in one of the serial ports possibly related to the effects of a storm.
• If cycling the power does not fix the problem, the RMDC has an internal problem, either with the computer, the NTG modem, or the modem's I/O harness. Return the RMDC for repair.

Reduction in Amount of Data Collected

If the RMDC is not collecting as much data as before (but it is still collecting some MIU data), this usually indicates that there is a problem with the antenna and feedline system. It could also indicate an internal problem. To determine the cause of the problem, complete the following steps.

1. Check all the system voltages as outlined above.
2. Measure the VSWR following the steps on the previous page.
 If the VSWR is high, have qualified radio personnel check out and certify the feedline and antenna.
3. Check the power ouput.
 If the power output is low, place the wattmeter between the duplexer and the surge protector to make a second VSWR.
 If the VSWR measures much higher before the surge suppressor, the suppressor can be damaged.

If there is still a reduction in data collected, most likely there is a problem with the duplexer or radio. Contact Customer Support.
Contacting Customer Support

Within North America, Neptune Customer Support is available Monday through Friday, 7:00 AM to 5:00 PM Central Standard Time by telephone, email, or fax.

By Phone

To contact Neptune Customer Support by phone, complete the following steps.

1. Call (800) 647-4832.
2. Select one of the following options:
 - Press 1 if you have a Technical Support Personal Identification Number (PIN).
 - Press 2 if you do not have a Technical Support PIN number.
3. Enter the six-digit PIN and press #.
4. Select one of the following options.
 - Press 2 for Technical Support.
 - Press 3 for maintenance contracts or renewals.
 - Press 4 for Return Material Authorization (RMA) for Canadian accounts.

You are directed to the appropriate team of Customer Support Specialists. The specialists are dedicated to you until the issue is resolved to your satisfaction. When you call, be prepared to give the following information.

- Your name and utility or company name.
- A description of what occurred and what you were doing at the time.
- A description of any actions taken to correct the issue.

By Fax

To contact Neptune Customer Support by fax, send a description of your problem to (334) 283-7497. Please include on the fax cover sheet the best time of day for a customer support specialist to contact you.

By Email

To contact Neptune Customer Support by email, send your message to support@neptunetg.com.
Appendix A: RF Antenna Installation

RF Antenna Overview

There are a number of critical items you must consider when placing and installing the antenna. The following topics contain items that can influence the antenna placement and installation.

Mounting the Antenna

To mount the antenna, complete the follows steps.

1. Mount the antenna as high as possible with an unobstructed view of the coverage area.
 - The supporting structure, if the antenna is not mounted above it, can cause specific areas of limited coverage.
 - A water tower in particular can severely limit coverage where the signal must pass directly through the tank. When mounting the antenna on a water tower, Neptune recommends mounting it on top as close to the center as possible.
 - When mounting the antenna on a traditional three-leg or four-leg tower, position the antenna using a standoff mount at least 5 feet away from the tower to minimize coverage area problems.

2. Avoid making the RMDC antenna the tallest point in the surrounding area to decrease the potential of the antenna being damaged by lightning.

WARNING: Do not mount antennas on utility poles, electric service masts, or other structures carrying electric light or power wires. Coaxial cables must maintain clearance of:

 - At least 2 feet (0.6 m) from power or light wires carrying 250V or less.
 - Or
 - At least 10 feet (3.0 m) from power wires carrying more than 250V, per NEC, Article 810, CEC Section 54.
Mounting the Antenna Mast

When mounting the antenna and antenna mast, it is important to maximize the line-of-sight relationship between the RF 450™ MHz antenna and R450 MIUs for optimum RF communications.

WARNING: The antenna mast and stand must be grounded to the same grounding electrode used for the building’s electrical system. This ensures that all exposed, non-current-carrying metal parts are the same potential. Refer to NEC Article 810 and CEC Section 54.

WARNING: Antenna contact with high voltage wires can result in death. Watch for overhead electric power lines when erecting the antenna and mast.

Site Recommendations

The following are recommendations for sites with multiple transmitters, receivers, and antennas. These sites require extra care when determining a location to install the antenna.

- Avoid mounting the RMDC antenna so that it is at the same height as another antenna on the site, regardless of the frequencies.
- On sites that have multiple antennas, if possible, mount the antennas one above the other, separating each by at least 10 feet vertically. This minimizes the interference between the systems.
- For cellular antenna sites, mount the RMDC antenna either above, below, or in the middle of the ring of cellular antennas. The two systems can coexist without interference.
- Antenna sites that must share space with multiple transmitting systems can require additional equipment to protect the systems from interfering with each other. These sites can also require additional engineering to make them perform well.
Sites with multiple radio systems that are already operating on the 450 - 470 MHz band can combine the signals into one antenna system using the appropriate equipment. This often works better than attempting to protect the individual systems from interfering with each other.

Managed antenna sites can require additional equipment and dictate the installation. As long as the installation meets Neptune's minimum requirements, follow the site's requirements as recommended.

Feed Line and Antenna Recommendations

CAUTION: Neptune recommends that you consult with a qualified installer on the design and installation of the antenna system. If the installer is already familiar with the site and the existing equipment, this can make the installation go more smoothly.

Feed Line

The feed line is a significant contributor to both good and poor system performance. A properly installed feed line is critical to optimal system performance. Testing the antenna while it is on the ground can ensure the system is working properly.

Installation of the connectors is best done with the proper tools and a trained installer. With the proper tools and jigs, installing coaxial connectors takes only a few minutes each. Not using the proper tools as recommended by the manufacturer can potentially cause problems, either immediately or after several years of proper operation.

Feed Line Requirements

Consider the following feed line requirements.

- The installer must certify the antenna and feed line system installation (after it is completed) to ensure it performs according to specifications.
- The maximum loss for the feed line and connectors must be less than 3 dB.
• Bond the feed line at the top of the tower and at the base of the tower. Use Andrew / CommScope grounding kits and procedures for all bonds.

• For towers over 150 feet tall, bond the feed line at regular intervals down the tower. The general recommendation is that the feed line be bonded every 50 feet to 75 feet. Site requirements and standard practices always dictate the configuration.

• You can install an optional surge protector on the tower near the antenna to help protect the feed line.

• For the AVA5-50 cable or larger, use jumpers to go between the larger cable and the RMDC and antenna connectors. Jumpers provide coaxial cable downsizing for the last 6 feet of the installation, allowing a more flexible and manageable connection to the RMDC.

• Andrew provides installation instructions for the Heliax coaxial cable. See Bulletin 17800B Revision C. Neptune Customer Support can supply a PDF copy.

Cable Guidelines

Prepare the cable for installation, and check for damage. You need the following materials to install the cable.

Table 25 – Material Needed for Cable Installation

<table>
<thead>
<tr>
<th>Action</th>
<th>Material Needed</th>
</tr>
</thead>
</table>
| Hoisting the Cable | • Hoist lines
| | • Pulleys
| | • Cable reel
| | • Hoisting grips |
| Anchoring Cable | • Cable hangers
| | • 3-feet to 4-feet intervals or as recommended by the coax cable manufacturer |
| Grounding | Coax ground kits (top, bottom, building entrance) |
| Horizontal Cable | • Above ground - ice bridge
| Runs | • Buried cable - conduit or sand below the frost line or one meter |
Appendix A: RF Antenna Installation

Table 25 – Material Needed for Cable Installation (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Material Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable Connections</td>
<td>• Connector installation instructions</td>
</tr>
<tr>
<td></td>
<td>• Connector torque</td>
</tr>
<tr>
<td></td>
<td>• Weatherizing kits</td>
</tr>
<tr>
<td>Measurements</td>
<td>• Return Loss (VSWR)</td>
</tr>
<tr>
<td></td>
<td>• Distance to Fault (DTF)</td>
</tr>
</tbody>
</table>

Neptune Part Numbers

The following table provides Neptune part numbers for cable.

Table 26 – Neptune Part Numbers for Cable

<table>
<thead>
<tr>
<th>Neptune Part Number</th>
<th>Coax Diameter</th>
<th>Loss per 100'</th>
<th>Minimum Bend Radius</th>
<th>Weight per Foot</th>
<th>Maximum Length</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>10046-119</td>
<td>1/2"</td>
<td>1.45 dB</td>
<td>5"</td>
<td>0.15</td>
<td>150'</td>
<td>Recommended antenna cable for 150' cable runs or less</td>
</tr>
<tr>
<td>10046-118</td>
<td>7/8"</td>
<td>0.74 dB</td>
<td>10"</td>
<td>0.30</td>
<td>400'</td>
<td>Recommended antenna cable for runs over 150'</td>
</tr>
</tbody>
</table>

The following table provides the Neptune part numbers for connectors and accessories.

Table 27 – Connectors and Accessories

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Neptune Part Number</th>
<th>Coax Diameter</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>F5J4-50B</td>
<td>10046-117</td>
<td>Pre-made Coax 6' Jumper DIN Male on one end, N Male on the other</td>
<td>Used as jumper from feed line to RMDC or antenna</td>
</tr>
</tbody>
</table>
Table 27 – Connectors and Accessories (continued)

<table>
<thead>
<tr>
<th>Cable Type</th>
<th>Neptune Part Number</th>
<th>Coax Diameter</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDF4-50A</td>
<td>8138-200</td>
<td>Coax Connector, N Male</td>
<td>Mates with RMDC and antenna connectors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SureGround Grounding Kit for 1/2 " coax</td>
<td></td>
</tr>
<tr>
<td>AVA5-50</td>
<td>8138-190</td>
<td>Coax Connector, 7/16" DIN Female</td>
<td>Used to connect to FSJ4 jumper cable</td>
</tr>
</tbody>
</table>

For the long-term protection of all RF connections, use the appropriate Andrews weatherproofing kit (CommScope P/N 245171) on all coaxial connectors.

Antenna

General specifications for the supplied antenna are shown in the table below.

Table 28 – Antenna Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neptune P/N</td>
<td>12896-001</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>450-482 MHz</td>
</tr>
<tr>
<td>Maximum Input Power (Watts)</td>
<td>500</td>
</tr>
<tr>
<td>Gain</td>
<td>8.1 dBi (6 dBi)</td>
</tr>
<tr>
<td>Bandwidth < 1.5 VSWR</td>
<td>32 MHz</td>
</tr>
<tr>
<td>Vertical Beamwidth (-3 db)</td>
<td>20 degrees</td>
</tr>
<tr>
<td>Lightning Protection</td>
<td>Direct ground</td>
</tr>
<tr>
<td>Termination</td>
<td>N female</td>
</tr>
<tr>
<td>Overall Length</td>
<td>9.3 feet</td>
</tr>
<tr>
<td>Element Housing Length</td>
<td>6.8 feet</td>
</tr>
<tr>
<td>Support Pipe Diameter</td>
<td>2.5 inches</td>
</tr>
</tbody>
</table>
Table 28 – Antenna Specifications (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support Pipe Length</td>
<td>26 inches</td>
</tr>
<tr>
<td>Wind Load Area</td>
<td>1.61 square feet</td>
</tr>
<tr>
<td>Rated Wind Velocity</td>
<td>225 MPH</td>
</tr>
<tr>
<td>Weight</td>
<td>30 lbs</td>
</tr>
<tr>
<td>Mounting Hardware Included</td>
<td>DB365 clamps</td>
</tr>
</tbody>
</table>

Requirements

- If mounting the antenna on the side of a tower or other supporting structure, mount it so that it is at least 5 feet away from the structure. The components to offset the antenna are specific to the installation and are not included with the RMDC package.
- The antenna is large so take care when hoisting it up a tower so that it is not damaged.
- Do not attach the feed line to the antenna while hoisting it up the tower or other supporting structure. Attach the feed line after the antenna is in place.
- There have been reports of damage to the antenna’s N-type connector where the center pin is bent and shorts out the antenna system. Take care not to damage the connector.

System Certification

The Andrews antenna supplied with the RMDC is specified as having a VSWR of 1.5:1 or better over the 450 - 470 MHz range.

Measuring VSWR at the RMDC must take into account losses in the feed line. For instructions, see “Measuring the VSWR” on page 61. The easiest approach is to use return loss instead of VSWR. The 1.5:1 VSWR translates into a return loss of 13.98 dB. Refer to Table 30 on page 73 and Table 31 on page 75 to assist with the calculation.

It is recommended that the feed line be certified as a separate step. This is best performed by putting a known amount of power into one end of the cable and verifying that, after correcting for the cable losses, the correct amount of power is output at the other end.
Power Measurement

Table 29 – Power Measurement to Return Loss and VSWR Conversion Table -Part I

<table>
<thead>
<tr>
<th>Input Power</th>
<th>1W</th>
<th>5W</th>
<th>10W</th>
<th>Return Loss</th>
<th>VSWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflected Power Reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td>0.005</td>
<td>0.01</td>
<td>30.0</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>0.002</td>
<td>0.010</td>
<td>0.02</td>
<td>27.0</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>0.003</td>
<td>0.015</td>
<td>0.03</td>
<td>25.2</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>0.004</td>
<td>0.020</td>
<td>0.04</td>
<td>24.0</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>0.005</td>
<td>0.025</td>
<td>0.05</td>
<td>23.0</td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>0.006</td>
<td>0.030</td>
<td>0.06</td>
<td>22.2</td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>0.007</td>
<td>0.035</td>
<td>0.07</td>
<td>21.5</td>
<td>1.18</td>
<td></td>
</tr>
<tr>
<td>0.008</td>
<td>0.040</td>
<td>0.08</td>
<td>21.0</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>0.009</td>
<td>0.045</td>
<td>0.09</td>
<td>20.5</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td>0.010</td>
<td>0.050</td>
<td>0.10</td>
<td>20.0</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>0.100</td>
<td>0.20</td>
<td>17.0</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>0.030</td>
<td>0.150</td>
<td>0.30</td>
<td>15.2</td>
<td>1.42</td>
<td></td>
</tr>
<tr>
<td>0.040</td>
<td>0.200</td>
<td>0.40</td>
<td>14.0</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>0.050</td>
<td>0.250</td>
<td>0.50</td>
<td>13.0</td>
<td>1.58</td>
<td></td>
</tr>
<tr>
<td>0.060</td>
<td>0.300</td>
<td>0.60</td>
<td>12.2</td>
<td>1.65</td>
<td></td>
</tr>
<tr>
<td>0.070</td>
<td>0.350</td>
<td>0.70</td>
<td>11.5</td>
<td>1.72</td>
<td></td>
</tr>
<tr>
<td>0.080</td>
<td>0.400</td>
<td>0.80</td>
<td>11.0</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td>0.090</td>
<td>0.450</td>
<td>0.90</td>
<td>10.5</td>
<td>1.86</td>
<td></td>
</tr>
<tr>
<td>0.100</td>
<td>0.500</td>
<td>1.00</td>
<td>10.0</td>
<td>1.92</td>
<td></td>
</tr>
<tr>
<td>0.110</td>
<td>0.550</td>
<td>1.10</td>
<td>9.59</td>
<td>1.99</td>
<td></td>
</tr>
<tr>
<td>0.120</td>
<td>0.600</td>
<td>1.20</td>
<td>9.21</td>
<td>2.06</td>
<td></td>
</tr>
</tbody>
</table>
Table 29 – Power Measurement to Return Loss and VSWR Conversion Table -Part I (continued)

<table>
<thead>
<tr>
<th>Input Power</th>
<th>1W</th>
<th>5W</th>
<th>10W</th>
<th>Return Loss</th>
<th>VSWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflected Power Reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.130</td>
<td>0.650</td>
<td>1.30</td>
<td>8.86</td>
<td>2.13</td>
<td></td>
</tr>
<tr>
<td>0.140</td>
<td>0.700</td>
<td>1.40</td>
<td>8.54</td>
<td>2.20</td>
<td></td>
</tr>
<tr>
<td>0.150</td>
<td>0.750</td>
<td>1.50</td>
<td>8.24</td>
<td>2.26</td>
<td></td>
</tr>
<tr>
<td>0.160</td>
<td>0.800</td>
<td>1.60</td>
<td>7.96</td>
<td>2.33</td>
<td></td>
</tr>
<tr>
<td>0.170</td>
<td>0.850</td>
<td>1.70</td>
<td>7.70</td>
<td>2.40</td>
<td></td>
</tr>
<tr>
<td>0.180</td>
<td>0.900</td>
<td>1.80</td>
<td>7.45</td>
<td>2.47</td>
<td></td>
</tr>
<tr>
<td>0.190</td>
<td>0.950</td>
<td>1.90</td>
<td>7.21</td>
<td>2.55</td>
<td></td>
</tr>
<tr>
<td>0.200</td>
<td>1.000</td>
<td>2.00</td>
<td>6.99</td>
<td>2.62</td>
<td></td>
</tr>
</tbody>
</table>

Table 30 – Power Measurement to Return Loss and VSWR Conversion Table -Part II

<table>
<thead>
<tr>
<th>Input Power</th>
<th>1W</th>
<th>5W</th>
<th>10W</th>
<th>Return Loss</th>
<th>VSWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflected Power Reading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>1.05</td>
<td>2.10</td>
<td>6.78</td>
<td>2.69</td>
<td></td>
</tr>
<tr>
<td>0.22</td>
<td>1.10</td>
<td>2.20</td>
<td>6.58</td>
<td>2.77</td>
<td></td>
</tr>
<tr>
<td>0.23</td>
<td>1.15</td>
<td>2.30</td>
<td>6.38</td>
<td>2.84</td>
<td></td>
</tr>
<tr>
<td>0.24</td>
<td>1.20</td>
<td>2.40</td>
<td>6.20</td>
<td>2.92</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>1.25</td>
<td>2.50</td>
<td>6.02</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>0.26</td>
<td>1.30</td>
<td>2.60</td>
<td>5.85</td>
<td>3.08</td>
<td></td>
</tr>
<tr>
<td>0.27</td>
<td>1.35</td>
<td>2.70</td>
<td>5.69</td>
<td>3.16</td>
<td></td>
</tr>
<tr>
<td>0.28</td>
<td>1.40</td>
<td>2.80</td>
<td>5.53</td>
<td>3.25</td>
<td></td>
</tr>
</tbody>
</table>
Table 30 – Power Measurement to Return Loss and VSWR Conversion Table -Part II (continued)

<table>
<thead>
<tr>
<th>Input Power</th>
<th>Return Loss</th>
<th>VSWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1W</td>
<td>5W</td>
<td>10W</td>
</tr>
<tr>
<td>Reflected Power Reading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.29</td>
<td>1.45</td>
<td>2.90</td>
</tr>
<tr>
<td>0.30</td>
<td>1.50</td>
<td>3.00</td>
</tr>
<tr>
<td>0.31</td>
<td>1.55</td>
<td>3.10</td>
</tr>
<tr>
<td>0.32</td>
<td>1.60</td>
<td>3.20</td>
</tr>
<tr>
<td>0.33</td>
<td>1.65</td>
<td>3.30</td>
</tr>
<tr>
<td>0.34</td>
<td>1.70</td>
<td>3.40</td>
</tr>
<tr>
<td>0.35</td>
<td>1.75</td>
<td>3.50</td>
</tr>
<tr>
<td>0.36</td>
<td>1.80</td>
<td>3.60</td>
</tr>
<tr>
<td>0.37</td>
<td>1.85</td>
<td>3.70</td>
</tr>
<tr>
<td>0.38</td>
<td>1.90</td>
<td>3.80</td>
</tr>
<tr>
<td>0.39</td>
<td>1.95</td>
<td>3.90</td>
</tr>
<tr>
<td>0.40</td>
<td>2.00</td>
<td>4.00</td>
</tr>
<tr>
<td>0.41</td>
<td>2.05</td>
<td>4.10</td>
</tr>
<tr>
<td>0.42</td>
<td>2.10</td>
<td>4.20</td>
</tr>
<tr>
<td>0.43</td>
<td>2.15</td>
<td>4.30</td>
</tr>
<tr>
<td>0.44</td>
<td>2.20</td>
<td>4.40</td>
</tr>
<tr>
<td>0.45</td>
<td>2.25</td>
<td>4.50</td>
</tr>
<tr>
<td>0.46</td>
<td>2.30</td>
<td>4.60</td>
</tr>
<tr>
<td>0.47</td>
<td>2.35</td>
<td>4.70</td>
</tr>
<tr>
<td>0.48</td>
<td>2.40</td>
<td>4.80</td>
</tr>
<tr>
<td>0.49</td>
<td>2.45</td>
<td>4.90</td>
</tr>
</tbody>
</table>
Coax Cable Loss

<table>
<thead>
<tr>
<th>Coax Type</th>
<th>FSJ4-50B</th>
<th>LDF4-50A</th>
<th>AVA5-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss 100 ft.</td>
<td>2.31 dB</td>
<td>1.45 dB</td>
<td>0.744 dB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length (ft.)</th>
<th>FSJ4-50B</th>
<th>LDF4-50A</th>
<th>AVA5-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.231</td>
<td>0.145</td>
<td>0.074</td>
</tr>
<tr>
<td>20</td>
<td>0.462</td>
<td>0.290</td>
<td>0.149</td>
</tr>
<tr>
<td>30</td>
<td>0.693</td>
<td>0.435</td>
<td>1.223</td>
</tr>
<tr>
<td>40</td>
<td>0.924</td>
<td>0.580</td>
<td>0.298</td>
</tr>
<tr>
<td>50</td>
<td>1.155</td>
<td>0.725</td>
<td>0.372</td>
</tr>
<tr>
<td>60*</td>
<td>1.386</td>
<td>0.870</td>
<td>0.446</td>
</tr>
<tr>
<td>70*</td>
<td>1.617</td>
<td>1.015</td>
<td>0.521</td>
</tr>
<tr>
<td>80*</td>
<td>1.848</td>
<td>1.160</td>
<td>0.595</td>
</tr>
<tr>
<td>90*</td>
<td>2.079</td>
<td>1.305</td>
<td>0.670</td>
</tr>
<tr>
<td>100*</td>
<td>2.310</td>
<td>1.450</td>
<td>0.744</td>
</tr>
<tr>
<td>110</td>
<td>2.541</td>
<td>1.595</td>
<td>0.818</td>
</tr>
<tr>
<td>120</td>
<td>2.772</td>
<td>1.740</td>
<td>0.893</td>
</tr>
<tr>
<td>130</td>
<td>3.003</td>
<td>1.885</td>
<td>0.967</td>
</tr>
<tr>
<td>140</td>
<td>3.234</td>
<td>2.030</td>
<td>1.042</td>
</tr>
<tr>
<td>150</td>
<td>3.465</td>
<td>2.175</td>
<td>1.116</td>
</tr>
<tr>
<td>160</td>
<td>3.696</td>
<td>2.320</td>
<td>1.190</td>
</tr>
<tr>
<td>170</td>
<td>3.927</td>
<td>2.465</td>
<td>1.265</td>
</tr>
<tr>
<td>180</td>
<td>4.158</td>
<td>2.610</td>
<td>1.339</td>
</tr>
<tr>
<td>190</td>
<td>4.389</td>
<td>2.755</td>
<td>1.414</td>
</tr>
<tr>
<td>200</td>
<td>4.620</td>
<td>2.900</td>
<td>1.488</td>
</tr>
<tr>
<td>210</td>
<td>4.851</td>
<td>3.045</td>
<td>1.562</td>
</tr>
</tbody>
</table>

* Acceptable range
Table 31 – Coax Cable Loss Table (continued)

<table>
<thead>
<tr>
<th>Coax Type</th>
<th>FSJ4-50B</th>
<th>LDF4-50A</th>
<th>AVA5-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss 100 ft.</td>
<td>2.31 dB</td>
<td>1.45 dB</td>
<td>0.744 dB</td>
</tr>
<tr>
<td>Length (ft.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>5.082</td>
<td>3.190</td>
<td>1.637</td>
</tr>
<tr>
<td>230</td>
<td>5.313</td>
<td>3.335</td>
<td>1.711</td>
</tr>
<tr>
<td>240</td>
<td>5.544</td>
<td>3.480</td>
<td>1.786</td>
</tr>
<tr>
<td>250</td>
<td>5.775</td>
<td>3.625</td>
<td>1.860</td>
</tr>
<tr>
<td>260</td>
<td>6.006</td>
<td>3.770</td>
<td>1.934</td>
</tr>
<tr>
<td>270</td>
<td>6.237</td>
<td>3.915</td>
<td>2.009</td>
</tr>
<tr>
<td>280</td>
<td>6.468</td>
<td>4.060</td>
<td>2.083</td>
</tr>
<tr>
<td>290</td>
<td>6.699</td>
<td>4.205</td>
<td>2.158</td>
</tr>
<tr>
<td>300</td>
<td>6.930</td>
<td>4.350</td>
<td>2.232</td>
</tr>
<tr>
<td>310</td>
<td>7.161</td>
<td>4.495</td>
<td>2.306</td>
</tr>
<tr>
<td>320</td>
<td>7.392</td>
<td>4.640</td>
<td>2.381</td>
</tr>
<tr>
<td>330</td>
<td>7.623</td>
<td>4.785</td>
<td>2.455</td>
</tr>
<tr>
<td>340</td>
<td>7.854</td>
<td>4.930</td>
<td>2.530</td>
</tr>
<tr>
<td>350</td>
<td>8.085</td>
<td>5.075</td>
<td>2.604</td>
</tr>
<tr>
<td>360</td>
<td>8.316</td>
<td>5.220</td>
<td>2.678</td>
</tr>
<tr>
<td>370</td>
<td>8.547</td>
<td>5.365</td>
<td>2.753</td>
</tr>
<tr>
<td>380</td>
<td>8.778</td>
<td>5.510</td>
<td>2.827</td>
</tr>
<tr>
<td>390</td>
<td>9.009</td>
<td>5.655</td>
<td>2.902</td>
</tr>
<tr>
<td>400</td>
<td>9.240</td>
<td>5.800</td>
<td>2.976</td>
</tr>
</tbody>
</table>

VSWR Calculation

Neptune recommends the following method of computing VSWR. Taking the reading at the RMDC end of the feed line without compensating for cabling losses can give a false impression of the antenna and feed line performance.
Using a Wattmeter and a Handheld 450MHz Radio

The recommended procedure is to:

- Use a handheld commercial grade transceiver that is tuned to the RMDC’s transmitter frequency.
- Use an inline wattmeter, such as a Bird Model 43 Wattmeter with the appropriate element (slug) for the frequency range and power output of the transceiver.

The Bird Model 43 Wattmeter uses elements to set the frequency and power ranges that the meter reads. Be sure the wattmeter element is a 400 - 1000 MHz model sized so that the forward power reading is close to full scale. For a 5W output handheld, the Bird 5E element is recommended. If the radio puts out more than 5W, a Bird 10E or higher power element can be required.

Complete the following steps to use a wattmeter and handheld to calculate VSWR.

1. Connect the wattmeter and transceiver to the feed line in place of the RMDC.
2. Measure both the forward and reflected power.
3. Find the return loss value using Table 29 on page 72 and Table 30 on page 73.
4. Find the loss attributed to the coax using Table 31 on page 75 (based on the coax type and feed line length).
 Use the following formula to calculate the adjusted return loss.
 \[
 \text{Return Loss (from Table)} - (2 \times \text{Cable Loss}) = \text{Corrected Return Loss}
 \]
5. Find the VSWR using Table 29 on page 72 and Table 30 on page 73 using the Corrected Return Loss value.
6. Change the frequency on the handheld transceiver to the RMDC’s receive frequency.
7. Measure the power and calculate VSWR using the procedure just used for calculating transmitter VSWR.
8. Record the VSWR values for both the transmit and receive frequencies. For the antenna system to pass, both calculated VSWR values must be less than 1.5.1.
Using the AEA 140-525 Antenna Analyzer

To configure the analyzer, complete the following steps.

- Turn the analyzer **ON**.
- Type the frequency: **46000**.
- Press **Enter**.
- Use the width buttons to set the value next to **WID** to **20**.
- Set the reading to return loss by pressing **F1** slowly three times. The unit beeps each time.

Taking the Reading and Calculating VSWR

To take the reading and calculate VSWR, complete the following steps.

- Connect the analyzer to the feed line in place of the RMDC.
- Configure the analyzer using the preceding procedure.
- Be sure that there is not a vertical line running through the display in the plot area. If there is, press **EXAM PLOT** to clear it.
 - Allow 10 - 20 seconds for the analyzer reading to stabilize.
- Press **EXAM PLOT** to freeze the display.
- Using the **FREQ** arrows, move the cursor (the vertical line in the middle of the screen) to the RMDC's frequency. (It moves to within 100KHz of a frequency.)
- Read the value next to **RETL** on the display. This is the return loss value.
- Find the loss attributed to the coax (based on the coax type and feed line length) using Table 31 on page 75.
- Calculate the adjusted return loss using the following formula.

\[
\text{Return Loss (from Table 5)} - (2 \times \text{Cable Loss}) = \text{Corrected Return Loss.}
\]
9. Find the VSWR using the Corrected Return Loss value in Table 29 on page 72 or Table 30 on page 73.

10. Move the cursor to within 100KHz of the RMDC’s receive frequency.

11. Calculate the VSWR using the new return loss value.

12. Record both values. They must be less than 1.5.1 for the antenna and feed line to pass the test.

General Installation Guidelines

This section provides general installation guidelines.

Unpacking

As with all precision electronic instruments, handle the RF 450 MHz antenna with care; however, no additional special handling is required.

After unpacking the RF 450 MHz antenna, inspect it for damage. If any parts of the R450 MHz antenna appear to be damaged or prove to be defective upon installation, notify your Neptune sales representative. If the unit or item requires reshipment, use the original cardboard box and packing material.

In particular, check to be sure that the N-type connector at the base of the antenna is not damaged. This is much easier to check while the antenna is on the ground than after it is installed.

RF Antenna Installation Kit

The RF 450 MHz antenna (see Figure 52) and the basic accessories are included with the RMDC. The mounting brackets that are included are designed to mount on the top of a mast or similar structure.

If the installation requires offsetting the antenna from the supporting structure, an antenna standoff mounting bracket (see Figure 51) can be ordered separately from another vendor. Neptune does not sell it. Mounting the antenna with a standoff bracket moves the antenna out away from the structure and improves performance.
Mounting the antenna using the standoff bracket will affect the antenna pattern.

Tools and Materials

Table 32 shows the recommended tools and materials you need to successfully install the RF antenna.

Table 32 – Recommended Tools and Materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Description/Recommendation</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Took Kit</td>
<td>Contains standard tools including:</td>
<td>Various installation procedures performed by the installer</td>
</tr>
<tr>
<td></td>
<td>• Assorted screwdrivers (medium, flat-head)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Cordless electric drill / assorted bits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Adjustable wrench</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Standard socket wrench set</td>
<td></td>
</tr>
</tbody>
</table>
Table 32 – Recommended Tools and Materials (continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description/Recommendation</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Standard box-end wrench set</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hammer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Channel locks</td>
<td></td>
</tr>
<tr>
<td>UV-Stable Cable Ties</td>
<td>8" and 12" (20.32 cm and 30.48 cm)</td>
<td>Secure coax cable</td>
</tr>
<tr>
<td>Cable Clips</td>
<td>Various sizes</td>
<td>Securing coax cable</td>
</tr>
<tr>
<td>Weatherizing Kit</td>
<td>3M - Scotch Weatherproofing Kit (P/N: WK-101)</td>
<td>Weatherproofing coax cable connections</td>
</tr>
<tr>
<td></td>
<td>- or Times Microwave P/N: WK-S-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- or CommScope P/N: 245171</td>
<td></td>
</tr>
<tr>
<td>Electrical Tape</td>
<td>Scotch® Heavy Duty Vinyl Electrical Tape 22</td>
<td>Weatherproofing coax cable connections and other connections as required</td>
</tr>
<tr>
<td></td>
<td>- or Scotch® Super 88</td>
<td></td>
</tr>
</tbody>
</table>

Installing the RF Antenna

This section contains the instructions for the RF antenna installation.

Mounting the RF 450 MHz Antenna

The RF 450 MHz antenna must be installed by professionals in accordance with the FCC site license before you begin the installation of the RMDC.

WARNING: Mounting and wiring the RF 450 MHz antenna must be done by a trained professional. Be sure to subcontract this work, so it is completed properly.
The subcontractor must check the cable, connectors, and the antenna installation using the VSWR meter.

To mount the RF 450 MHz antenna, complete these steps.

1. Assemble the RF 450 MHz antenna according to the instructions included with the antenna kit. See "Troubleshooting" on page 51.
2. Mount the antenna according to the instructions provided. Use the mounting hardware included with the antenna kit.
3. Install the antenna in accordance with the FCC site license (per the antenna mounting instructions contained in this appendix).
4. Weatherize the antenna coaxial connector using the weatherizing kit. See Table 32 on page 80.

Mounting the Antenna Mast to the Building

With a wall-mount installation, it is necessary to mount the RF 450 MHz antenna and cellular antenna on the exterior of the building. Complete the following steps to mount the antenna mast to the building. Use the manufacturer installation instructions provided with mounting hardware.

1. Use antenna pole brackets to install the pole to the building. See Appendix A.
2. Pre-drill your holes for the first pole bracket.
3. Secure the pole bracket in one of the following ways. If mounting to:
 - A wood-constructed wall, use wood screws rated at minimum of 20 pounds loading.
 - Sheet metal or masonry, use appropriate sheet metal screws or masonry anchors rated at a minimum of 20 pounds loading.
4. Place the antenna mast pole within the bracket.
5. Using a level to make sure the pole is vertical, line up a second bracket a minimum of 2 feet from the bracket you just installed.
6. Secure the second bracket similarly to the first one, following steps 2 and 3.
7. Line up the pole in the two brackets. See Figure 55.
8. Secure the pole with the bolts provided.

Figure 55 – Lining Up Second Bracket

Attaching the RF 450 MHz Antenna Cable

To attach the RF 450 MHz antenna cable to the RMDC, complete the following steps.

1. Locate the RF 450 MHz antenna cable that extends from the RF 450 MHz antenna cable conduit. See Figure 56.
2. Connect the RF 450 MHz antenna cable to the RF 450 MHz antenna connector located on the bottom of the antenna. See Figure 56. Tighten the coaxial connector to:
 - **Type N**: 15 to 20 in-lb (1.7 - 2.30 N-m)
 - **Type 7 - 16 DIN**: 220 - 265 in-lb (25 - 30 N-m)

Figure 56 – RF 450 MHz Antenna Connection

WARNING: Give special consideration when the RMDC is installed inside a building.

The screen (shield) of the coaxial cable must be connected to the earth (grounded) at the entrance to the building. Be sure to do this in accordance with applicable national electrical installation codes (Section 820.93 of the National Electrical Code, ANSI / NFPA 70).
Weatherizing the Cable Connections

To weatherproof the cables using the Scotch Wireless WK-101 Kit or equivalent, complete the following steps.

1. Using the weatherizing kit, start the tape at the top of the RF antenna connection as illustrated in Figure 57.
2. Wrap the tape around the connection several times; slowly work your way downward to weatherize your connection at the base.

Figure 57 – Weatherizing the RF Antenna Connection

Troubleshooting the RF Antenna

This section provides a list of equipment needed to resolve problems that can arise with your RF antenna.

Equipment Required

The following items are required to troubleshoot the RMDC.

- Keys to access the site and open the R450 RMDC cabinet
- Adjustable wrench or set of open end wrenches to remove the antenna N-type coaxial connector from inside of the R450 RMDC antenna surge arrestor.
- Handheld UHF (450 - 470 MHz) Radio
- Bird Model 43 Wattmeter with appropriate slug or AEA 140 - 525 Antenna Analyzer
Testing the RF Antenna

To test the RF antenna, complete the following steps.

1. Remove the power from the R450 RMDC.
2. Open the R450 RMDC cabinet.
3. Use an open-end wrench or adjustable wrench to carefully remove the coaxial cable assembly (with the N-type connector) from the main antenna surge arrestor (located inside the R450 RMDC cabinet at the bottom).
4. Go to "VSWR Calculation" on page 76

If using the power measurement method for the VSWR calculation, you cannot use the R450 RMDC’s transmitter to certify the antenna system. The transmitter only transmits short packets approximately 50 ms in length, so taking an accurate reading of forward or reflected power cannot be done with standard equipment.

5. If the VSWR does not meet specifications, disconnect the RF antenna feed cable (with the N-type connector) that is located under the R450 RMDC cabinet.

Repeat the VSWR calculation procedure on the RF antenna and feed cable.

If the VSWR meets specifications, the problem may be a bad or damaged antenna surge arrestor. Contact Neptune Customer Support to return the R450 RMDC for repair.
Appendix A: RF Antenna Installation

This page intentionally left blank.
Appendix B: USB Flash Drive Configuration for RMDC

Overview

This appendix provides information and the steps for creating a R450™ Rack Mount Data Collector (R450 RMDC) and configuring the USB flash drive using the N_SIGHT® PLUS host software.

Creating a Collector

The Collector tab in the N_SIGHT PLUS host software provides valuable information about the R450 RMDC in your R450™ System. On this tab you can search for or create an R450 RMDC.

Searching for Collectors

To locate an RMDC, complete the following steps.

1. Click **Search Collectors** on the **Collector** tab.

 The following page appears.

 ![Collector Search](image)

 Figure 58 – Collector Search

2. Click the **Filter** button. See Figure 58.

 Three search fields appear. See Figure 58:

 - Collector ID
 - Collector Name
 - Synchronized User
3. Type all or part of the search criteria in the search field. Everything matching your search criteria appears in the collector list on the Collector tab.

4. Select a collector and the detailed information for the collector appears in the lower-half of the page. See Figure 59.

5. Select one of the following options.

- **Create**, to create another RMDC.
- **Edit**, to edit information for the selected RMDC.
- **Delete**, to delete the selected RMDC.
- **Build a USB**, to build a drive for the RMDC.
Creating a New Collector

On this tab, remember the following:

- All fields with an * are required.
- All white fields are available fields.
- All fields with gray text are read-only fields.

To create a new RMDC, complete the following steps.

1. Open the N_SIGHT PLUS host software on the PC.
2. Select the Collector tab, and then click Create Collector.

 The Create a New Collector window appears similar to Figure 60 on page 89. The Collector Details tab is the default tab displayed. All required fields display a red *.

![Figure 60 – Create a New Collector Window](image-url)
Table 33 – Collector Details

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector ID</td>
<td>Indicates the unique identifier for the data collector which can be a street, location, or a neighborhood.</td>
</tr>
<tr>
<td>Collector Name</td>
<td>Indicates the name of the data collector, for example the street, neighborhood, tower name, and so forth.</td>
</tr>
<tr>
<td>Host IP Address</td>
<td>Indicates the static IP address for the host database.</td>
</tr>
<tr>
<td>System ID #</td>
<td>Indicates the system identification number.</td>
</tr>
<tr>
<td>Time Zone</td>
<td>Indicates the unique identifier for the time zone in which the RMDC is located; offset is from UTC: Atlantic Time is -4; Eastern Time is -5; and so forth.</td>
</tr>
<tr>
<td>Sync Interval (minutes)</td>
<td>Indicates, in number of minutes, the time between synchronizations between the collector and the database. Usually it is 60 minutes for a cellular system, and 30 minutes for an Ethernet system.</td>
</tr>
<tr>
<td>Transmit Frequency</td>
<td>Indicates the frequency used to transmit data.</td>
</tr>
<tr>
<td>Receive Frequency</td>
<td>Indicates the frequency used to receive data.</td>
</tr>
<tr>
<td>Latitude</td>
<td>Indicates the actual latitude of the RMDC.</td>
</tr>
<tr>
<td>Longitude</td>
<td>Indicates the actual longitude of the RMDC.</td>
</tr>
<tr>
<td>Power</td>
<td>Indicates the power used by the RMDC.</td>
</tr>
<tr>
<td>Antenna Height</td>
<td>Indicates the actual height of the RF antenna.</td>
</tr>
<tr>
<td>Daily Reboot</td>
<td>Indicates if the RMDC requires a daily reboot.</td>
</tr>
<tr>
<td>Start Time</td>
<td>Indicates the beginning time in hh:mm format for the quiet time period when the RMDC is not transmitting or receiving.</td>
</tr>
<tr>
<td>End Time</td>
<td>Indicates the ending time in hh:mm format for the quiet time period when the RMDC is not transmitting or receiving.</td>
</tr>
</tbody>
</table>
3. Complete all the required and available information that applies, and then click **Save**.

The Collector Network Settings tab appears similar to Figure 61.

![Collector Network Setting Tab](image)

Figure 61 – Collector Network Setting Tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAN Connection Type</td>
<td>Indicates the type of Wide Area Network (WAN) used by the RMDC. The options include the following:</td>
</tr>
<tr>
<td></td>
<td>• Cellular</td>
</tr>
<tr>
<td></td>
<td>• Cellular_Ethernet</td>
</tr>
<tr>
<td></td>
<td>• Network_DHCP</td>
</tr>
<tr>
<td></td>
<td>• Network_Static_IP</td>
</tr>
<tr>
<td></td>
<td>• Mobile</td>
</tr>
<tr>
<td>NTP Server</td>
<td>Indicates a server that uses NTP (Network Time Protocol) to keep the clock accurate.</td>
</tr>
<tr>
<td>Primary DNS Server</td>
<td>Indicates the primary server, the first DNS (Domain Name System) server queried when resolving a server name. You can supply the name rather than the IP address, for example, Chicago rather than 10.10.10.10.</td>
</tr>
<tr>
<td>Secondary DNS Server</td>
<td>Indicates the second DNS server.</td>
</tr>
</tbody>
</table>

Table 34 – Collector Network Settings

On this tab, remember the following:
4. Complete all the fields (on this tab, all fields are acquired), and then click **Save**.

The new RMDC appears in the list of R450 DCs on the **Collector** tab, and the detail appears in the lower half of the page.

Editing Collector Information

To edit information for an RMDC, complete the following steps.

1. On the **Collector** tab, select the RMDC for which you want to edit the information.

 The **Edit Collector** window appears with the existing information for the collector.

2. Edit the appropriate information on both the **Collector Details** tab and the **Collector Network Settings** tab.

3. Click **Save** to display and save the new information for the collector.

Deleting a Collector

To delete a collector, complete the following steps.

1. On the **Collector** tab, select the collector you want to delete.

2. Click **Delete**.

 A delete confirmation message appears similar to the following.

 ![Delete Confirmation Dialog Box](image)

 Figure 62 – Delete Confirmation Dialog Box

3. Click **OK**.

 The RMDC is now deleted from the list of collectors on the **Collector** tab.
Building a USB Drive for Collector Configuration

This feature adds the ability to build a USB drive. It can be inserted into a replacement collector for automatic configuration in order to mimic an old collector.

R450 Collector configuration application must be installed on a local PC to extract files to the USB drive. Make sure only the desired USB drive is inserted into the computer.

To add a USB drive, complete the following steps.

1. Select the RMDC from the Collector tab to upload data to the USB drive.
2. Click Build USB.
 A confirmation message appears similar to the following.

 ![Figure 63 - Save USB Build](image)

3. Click OK to build the drive.
4. Double-click the downloaded file (*.ntg).
 The application formats and extracts files to the USB drive. A message similar to the following appears.

 ![Figure 64 - Thumb Drive Created](image)
This page intentionally left blank.
Appendix C: Ethernet Termination

RJ-45 Straight-Through Ethernet Cable

For most installations, use the straight-through Ethernet cable. Terminate the Ethernet cable according to the diagram below using the T-568B wiring standard for both ends. Usually the end is already pre-terminated to the switch or hub.

Figure 65 – Straight-Through Ethernet Cable

RJ-45 Crossover Ethernet Cable

For some installations, a crossover Ethernet cable is required. If you require a cable to connect two Ethernet devices directly together without a hub or when you connect two hubs together, you need to use a crossover cable instead.

Figure 66 – RJ-45 Crossover Ethernet Cable
Determining if You Need a Crossover Cable

One method of determining if you need a crossover cable is to plug the Ethernet cable from the hub or modem into your laptop computer's Ethernet port. If the laptop computer can communicate through the Ethernet port, then the site probably requires a crossover Ethernet cable to be compatible with the RMDC.

Table 35 – Cable Color Code Table

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>o</td>
<td>White with orange stripe</td>
</tr>
<tr>
<td>O</td>
<td>Solid orange</td>
</tr>
<tr>
<td>g</td>
<td>White with green stripe</td>
</tr>
<tr>
<td>B</td>
<td>Solid blue</td>
</tr>
<tr>
<td>b</td>
<td>White with blue</td>
</tr>
<tr>
<td>G</td>
<td>Solid green</td>
</tr>
<tr>
<td>br</td>
<td>White with brown stripe</td>
</tr>
<tr>
<td>BR</td>
<td>Solid brown</td>
</tr>
</tbody>
</table>
Appendix D: Cellular Antenna Coax Cable

This appendix provides information about the cellular antenna coax cable.

Cellular Antenna Coax Cable Recommendations

Some installations require a longer coax cable for the cellular antenna connection. In these instances, you can order longer pre-terminated coax cable assemblies from Neptune. Refer to the coax cable recommendations in Table 36.

The coax cables are available in various lengths with N-male (plug), 50 ohm, connectors terminated on each end. In addition, heat shrink tubing is applied to both ends for added weatherproofing. However, the weatherproofing wrap (for example 3M Weatherproofing Kit P/N: WK-101) is still required after you make the final connection.

Table 36 – Coax Cable Recommendations for Cellular Antenna

<table>
<thead>
<tr>
<th>Coax Cable Length (ft.)</th>
<th>Coax Cable Type</th>
<th>Neptune P/N (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Times Microwave LMR-195</td>
<td>10046-112</td>
</tr>
<tr>
<td>8</td>
<td>Times Microwave LMR-195</td>
<td>10046-113</td>
</tr>
<tr>
<td>10</td>
<td>Times Microwave LMR-400-UF</td>
<td>13090-001</td>
</tr>
<tr>
<td>20</td>
<td>Times Microwave LMR-400-UF</td>
<td>13090-002</td>
</tr>
<tr>
<td>30</td>
<td>Times Microwave LMR-400-UF</td>
<td>13090-003</td>
</tr>
<tr>
<td>40</td>
<td>Times Microwave LMR-400-UF</td>
<td>13090-004</td>
</tr>
</tbody>
</table>
This page intentionally left blank.
Appendix E: Strut Clamp Recommendations

Use the strut clamps to mount the R450™ Rack Mount Data Collector (R450 RMDC) and UPS to Schedule 40 or Schedule 80 galvanized steel pipe. You can purchase strut clamps from local electrical suppliers. A quantity of two per unit is required.

Table 37 shows some general recommendations for stainless steel (304) strut clamps.

Table 37 – Recommended Stainless Steel Strut Clamps

<table>
<thead>
<tr>
<th>Inside Diameter (ID) Clamp (inch)</th>
<th>For SCH 40/SCH 80 steel pipe size (inch)</th>
<th>Manufacturer P/N (stainless steel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/8"</td>
<td>2"</td>
<td>McMaster-Carr 3115T47</td>
</tr>
<tr>
<td>2 7/8"</td>
<td>2.5"</td>
<td>McMaster-Carr 3115T48</td>
</tr>
<tr>
<td>3 1/2"</td>
<td>3"</td>
<td>McMaster-Carr 3115T49</td>
</tr>
<tr>
<td>4"</td>
<td>3.5"</td>
<td>McMaster-Carr 3115T51</td>
</tr>
<tr>
<td>4 1/2"</td>
<td>4"</td>
<td>McMaster-Carr 3115T52</td>
</tr>
<tr>
<td>5 9/16"</td>
<td>5"</td>
<td>McMaster-Carr 3115T53</td>
</tr>
<tr>
<td>6 5/8"</td>
<td>6"</td>
<td>McMaster-Carr 3115T54</td>
</tr>
<tr>
<td>8 5/8"</td>
<td>8"</td>
<td>McMaster-Carr 3115T66</td>
</tr>
</tbody>
</table>

WARNING: Do not mount the R450 RMDC or UPS to steel pipe that is smaller than 2 inches in diameter.
This page intentionally left blank.
A

ALM

Alarm indicator.

AMI

Advance Metering Infrastructure. System that captures, stores, and provides to the utility at frequent intervals detailed consumption and other information, such as, usage, leak, and flow status, in order to support advanced applications. These data can then be used to support a consumer portal. Furthermore, the mass of data generated by the system can feed an advanced Analects system to convert it into actionable information that supports the efficient management of the utility.

AMR

Automatic Meter Reading. The automated process of reading meters.

ANSI

American National Standards Institute.

APN

Access Point Name.

B

ballast

Heavy material used to secure the stability of the equipment stand. For the R450 System, concrete blocks are used for the ballast.
CDMA
Code Division Multiple Access. A channel-access method used by various radio communication technologies that allows multiple users to be connected over the same channel.

Data Collector
R450 Data Collector (R450 DC). The physical equipment that houses Neptune's N_SIGHT PLUS host software. The R450 DC is a device that collects meter reading data from Neptune's absolute encoder register interfacing with Neptune's R450 MIU and transmits the data for collection. This unit receives the data for collection. This unit receives the data and stores data to be downloaded through the host software.

dB
Decibels. The definition of the decibel is based on the measurement of power or the signal-to-noise ratio.

dBm
Power ratio in decibels (dB) of the measured power referenced to one milliwatt.

DC
Direct Current.

DHCP
Dynamic Host Configuration Protocol.

DNS
Domain Name System.

DTF
Distance to Fault.
F

FCC
Federal Communications Commission.

FST
Field Service Tool.

G

GSM
Global System for Mobile communication. The most widely-used digital wireless telephony technology.

I

IEEE
Institute of Electrical and Electronics Engineers.

IMEI
International Mobile Equipment Identifier.

in-lb
Inch-pound. A measurement of torque in the Imperial (American) system.

K

kA
Kiloampere. A measurement of electric current.
Glossary

L

LED
Light Emitting Diode.

M

MDA
Mobile Directory Number.

MEID
Mobile Equipment Identifier.

MHz
Megahertz, a unit of frequency. One MHz is equal to one million hertz.

MIU
Meter Interface Unit.

MPH
Miles per Hour, as related to wind velocity.

ms
Milliseconds.

N

Nm
Newton meter or newton moment, a measurement of torque in the metric system.

NTP
Network Time Protocol.
ohm-out

Perform a continuity test with a digital multimeter or an ohm-meter.

P/N

Part Number.

PIN

Personal Identification Number.

R450 System

R450 System is a fixed network AMI system for targeted applications allowing a utility to conduct meter reading operations automatically ensuring maximum collection of the data.

RMA

Return Material Authorization.

RSSI

Received signal strength indicator.

serial number

A unique identification number given to each product at the factory.

SIM

Subscriber Identification Module.
<table>
<thead>
<tr>
<th>U</th>
<th>UPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uninterruptible Power Supply.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V</th>
<th>VAC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Volts Alternating Current.</td>
</tr>
</tbody>
</table>

| VSWR | Voltage Standing Wave Ratio. The ratio of the amplitude of a partial standing wave at an antinode (maximum) to the amplitude at an adjacent node (minimum) in an electrical transmission line. |

<table>
<thead>
<tr>
<th>W</th>
<th>WAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wide Area Network.</td>
</tr>
</tbody>
</table>
Index

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-power box 29</td>
<td>backhaul 2, 4, 56</td>
</tr>
<tr>
<td>AC connections 38</td>
<td>base connection 22</td>
</tr>
<tr>
<td>accessories, antenna 12</td>
<td>battery</td>
</tr>
<tr>
<td>activating R450 RMDC 29</td>
<td>AGM 38</td>
</tr>
<tr>
<td>alarms, configuration packet 34</td>
<td>charger 38</td>
</tr>
<tr>
<td>ALM 61</td>
<td>safety checklist 41</td>
</tr>
<tr>
<td>ambient noise 6</td>
<td>type 39</td>
</tr>
<tr>
<td>amplifiers 6</td>
<td>build USB 93</td>
</tr>
<tr>
<td>antenna 3, 12</td>
<td></td>
</tr>
<tr>
<td>analyzer 78</td>
<td></td>
</tr>
<tr>
<td>cable, RF 450 MHz 17, 25</td>
<td></td>
</tr>
<tr>
<td>cellular 8, 20</td>
<td></td>
</tr>
<tr>
<td>commercial broadcast 6</td>
<td></td>
</tr>
<tr>
<td>connection 17</td>
<td></td>
</tr>
<tr>
<td>connector 62</td>
<td></td>
</tr>
<tr>
<td>external 3</td>
<td></td>
</tr>
<tr>
<td>mast 66</td>
<td></td>
</tr>
<tr>
<td>mounting 65</td>
<td></td>
</tr>
<tr>
<td>placement 5</td>
<td></td>
</tr>
<tr>
<td>RF 450 MHz 28, 66</td>
<td></td>
</tr>
<tr>
<td>APN 31</td>
<td></td>
</tr>
<tr>
<td>AWG 18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>cable</td>
</tr>
<tr>
<td></td>
<td>attaching 17</td>
</tr>
<tr>
<td></td>
<td>AVA5-50 68</td>
</tr>
<tr>
<td></td>
<td>clips 81</td>
</tr>
<tr>
<td></td>
<td>conduit 17</td>
</tr>
<tr>
<td></td>
<td>guidelines 68</td>
</tr>
<tr>
<td></td>
<td>Heliax 68</td>
</tr>
<tr>
<td></td>
<td>ties 81</td>
</tr>
<tr>
<td></td>
<td>CalAmp Vanguard 29, 56, 59</td>
</tr>
<tr>
<td></td>
<td>calculation, VSWR 76</td>
</tr>
<tr>
<td></td>
<td>carrier 30</td>
</tr>
<tr>
<td></td>
<td>CDMA 31</td>
</tr>
<tr>
<td></td>
<td>CEC 22</td>
</tr>
<tr>
<td></td>
<td>cell connection 30</td>
</tr>
</tbody>
</table>
cellular 22
 antenna 19-20
modem 2, 7, 29
modem, connectivity 59
service provider 31
CIS 1
coax
 cable 13, 18, 20-21
 hoisting grips 13
coax cable loss 75
collector configuration, USB 93
collector monitor 34
color code, cable 96
communication 5
compliance 5
components 2
configuration, PC notebook 52
configuring
 cellular modem 29
 collector, USB flash drive 32
connecting
 Ethernet 26
 UPS 45
corrected return loss 77-78
CPU board 32-33, 53
crossover cable, Ethernet 95
customer support 64

D
DC connections 38
diagnostics, UPS 49
dimensions 39
disconnect switch 29

E
electrical specifications 11
e-mail 35
environmental conditions 11
equipment, proper operation 5
Ethernet 2, 4, 26, 60
external antenna 3

F
FCC 1, 82
feed-in connection 22
feed line 6, 67
footprint 11
frequencies 1
FST 34, 51

G
general description 1
ground
 lug 18
 wire 18
grounding 21, 66
Index

GSM 31
 guidelines, installation 11

H
 handheld 77
 hazards 2
 host database 52
 host software 14, 34, 87
 create new collector 89
 deleting collector 92
 editing collector 92
 searching for collector 87

I
 IMEI 8
 improper installation 6
 inclement weather 51
 input current 43
 installation 2, 33
 interference 6
 internal on-off switch 29
 internet 52

K
 kit
 coax grounding 13, 18
 installation 12
 RF antenna installation 79
 tool 13

L
 licensed electrician 22
 link integrity 33

M
 magnet 14, 34, 60
 main breaker switch 29
 mast, antenna 3
 materials and materials 13
 MDN 31
 measuring VSWR 61
 mechanical specifications 11
 MEID 8
 Midland Radio 35
 MIU, R450 1, 5, 14, 51, 60, 66
 modem
 cellular 2, 7, 29
 Ethernet 18
 WiFi 26
 mounting
 antenna mast 66, 82
 bracket 38, 79
 cellular antenna 25
 components 3
 hardware 8, 26
 procedures 15

UPS 8-9
 weatherizing 13, 21, 81
RF antenna 65, 81
wall 23

N

N-type connector 17
N_SIGHT PLUS 14, 34, 87
NEC 18, 22
network 33
noise level 6

O

Ohm multimeter 51
operating frequency 38
OTASP 31
output
 connectors 46
 current 38

P

part numbers
 cable 69
 connectors and accessories 69
parts list, cellular modem
 cellular modem 8
performance
 degrade 6
 maintaining 7
 optimizing 5
 storm activity 7

pole
 installation 4
 mounting, UPS 37
 propagation model 5

R

R450 RMDC 1, 6, 53, 61, 65, 81
R450 system 5, 7
radio 62
radio power 55
receiver 6-7
register, absolute encoder 1
requirements, feed line 67
return loss 72-73
RF antenna 65-66
 attaching antenna cable 83
 installation guidelines 79
 installation kit 79
 tools and materials 80
 troubleshooting 84
 unpacking 79
RJ45, external plug kit
 external plug kit 9
RSSI 34

S

securing 36
serial port 61
service provider, cellular 8
servicing, UPS 47
SIM 8, 30
simulator, MIU 34
site, recommendation 66
socket wrench 20
specifications 11
electrical 11
environmental conditions 11
mechanical 11
UPS 38
spectrum analyzer 6
stable ties, UV 13
status LEDs
modem 57
UPS 47
storage 12
storm damage 52
strut clamp 8
surge
immunity, input 38
protector 68
survey 2, 6-7
synchronize 34, 61
system certification 71

termination, Ethernet 95
terrain 7
testing connections 33
tool kit 80
top strut channel 19
torque 18
transceiver 77
transfer time 38
transmitter 6
troubleshooting 51

U
UHF 61
unpacking 12
UPS 2, 22, 37
connecting 45
diagnostics 49
powering on 47
safety checklists 40
status LEDs 47
topology 38
weights 39
USB 32, 87

V
Verizon 31
voltage 47
input 38
output 38
VSWR 51, 63, 71, 78, 82
Index

W

wall mount 3, 23
WAN 30
water towers 65
wattmeter 77
weatherizing 21
 antenna connection 22
 base connection 22
 cable connections 84
 connections 21
 kit 21, 81
wrist strap 53